研究者業績
基本情報
- 所属
- 藤田医科大学 医科学研究センター・ 難病治療学 教授
- 学位
- 学士(医学)(1988年3月 京都大学)博士(医学)(1992年3月 京都大学)
- 研究者番号
- 30281091
- J-GLOBAL ID
- 200901025890179259
- researchmap会員ID
- 0000107006
- 外部リンク
筋骨格系疾患、糖尿病・肥満、神経変性疾患等の治療の難しい疾患の病態解明と治療法開発に関する研究を行っています。 モデル動物、ノンコーディングRNAの解析、RNA-seqやプロテオミクス等の網羅的解析、微量細胞の分取と分化培養,エクソソームを中心としたナノテクノロジーの医学応用等の先端技術を駆使して難病の病態生理の解明と治療法の基盤確立を目指した研究に取り組んでいます。
研究キーワード
17研究分野
9経歴
9-
2022年6月 - 現在
-
2022年4月 - 現在
-
2018年10月 - 現在
-
2005年 - 現在
-
1998年 - 2005年
学歴
2-
1988年4月 - 1992年3月
-
1982年4月 - 1988年3月
委員歴
11-
2020年1月 - 現在
-
2019年 - 現在
-
2018年4月 - 現在
受賞
5論文
172-
Scientific reports 15(1) 43802-43802 2025年12月15日 査読有り最終著者責任著者Small extracellular vesicles (sEVs) mediate cell-to-cell communication by carrying RNAs and proteins. Ubiquitin-like 3 (UBL3) functions as a posttranslational modification factor, regulating protein sorting to sEVs. Programmed cell death ligand 1 (PD-L1) binds to programmed cell death 1 (PD-1) on immune cells, suppressing their function. Although immune checkpoint inhibitors, anti-PD-L1 and anti-PD-1 antibodies, have improved cancer treatment, efficacy remains limited (~ 25%). Per recent studies, PD-L1-containing sEVs are elevated in cancer patients, contributing to impaired immunotherapy responses. Herein, we discovered that PD-L1 is modified by UBL3 and that its sorting to sEVs is regulated by UBL3. Furthermore, we found that statins, commonly prescribed for hypercholesterolemia, inhibit UBL3 modification, thereby reducing PD-L1 sorting to sEVs. Among patients with a high tumor proportion score, serum levels of PD-L1-containing sEVs were significantly lower in those using statins. Consistently, bioinformatic analysis revealed that UBL3 and PD-L1 expression levels affect lung cancer survival. Integrating statins into existing combination therapies may therefore offer a promising strategy to enhance immunotherapy efficacy.
-
Acta neuropathologica communications 2025年11月29日 査読有りLower grade gliomas frequently harbor mutations in isocitrate dehydrogenase (IDH), which define biologically distinct tumor subtypes. Although IDH-mutant and IDH-wildtype gliomas share similar histological morphology, they display markedly different metabolic profiles that may be exploited for targeted therapy. In this study, we investigated therapeutic approaches tailored to these metabolic differences. Using capillary electrophoresis-mass spectrometry, we compared the metabolomes of engineered IDH-wildtype and IDH-mutant glioma cell models. IDH-mutant cells exhibited elevated asparagine levels and reduced glutamine and glutamate levels compared with IDH-wildtype cells. These differences were corroborated in vivo by proton magnetic resonance spectroscopy of 130 patients with diffuse gliomas, showing lower glutamine and glutamate in IDH-mutant tumors. Pharmacological depletion of asparagine with L-asparaginase, which converts asparagine to aspartate, preferentially inhibited the growth of IDH-wildtype glioma cells, and this effect was potentiated by inhibition of asparagine synthetase. In contrast, inhibition of glutamate dehydrogenase 1 (GLUD1), the enzyme catalyzing the conversion of glutamate to α-ketoglutarate, selectively suppressed proliferation of IDH-mutant glioma cells by inducing reactive oxygen species accumulation and apoptosis. In vivo, L-asparaginase suppressed tumor growth in xenografted IDH-wildtype gliomas, whereas GLUD1 inhibition significantly reduced tumor growth in IDH-mutant glioma xenografts. These findings reveal distinct amino acid metabolic vulnerabilities defined by IDH mutation status and identify L-asparaginase and GLUD1 inhibition (via R162) as promising, mutation-specific therapeutic strategies. L-asparaginase demonstrated potent antitumor activity against IDH-wildtype gliomas, while GLUD1 inhibition selectively suppressed IDH-mutant gliomas both in vitro and in vivo. These results highlight the clinical potential of targeting amino acid metabolism in gliomas and provide a strong rationale for translating these mutation-specific approaches into future clinical trials.
-
Oxygen 5(2) 4-4 2025年4月18日 査読有りBecause soybean is sensitive to salt stress, it is necessary to improve their stress tolerance. Titanium-oxide nanoparticles (TiO2 NPs) enhanced the growth of soybean under salt stress. To elucidate the promotive effects of TiO2 NPs on soybean growth under salt stress, a gel-free/label-free proteomic analysis was carried out. The principal component analysis of proteins showed that TiO2 NPs affected proteins in roots grown under salt stress. The differentially changed proteins were associated with protein metabolism and transport in the biological process, the nucleus in the cellular component, and nucleic acid binding activity in the molecular function. Proteins identified with proteomics were verified using immunoblot analysis. The abundance of V-ATPase decreased in soybean under salt stress and increased with additional TiO2 NPs under stress, whereas xyloglucan endotransglucosylase/hydrolase did not change with any treatment. The abundance of peroxiredoxin increased under salt stress but decreased with additional TiO2 NPs under stress. These results suggest that TiO2 NPs confer salt tolerance in soybean plants at the early growth stage by regulating vacuole transport and reactive oxygen scavenging systems.
-
Cells 14(7) 2025年4月3日The role of a simulated microgravity environment on soybean growth was investigated. The root grew more under simulated microgravity conditions than in the presence of gravity. However, root shortening due to salt stress did not occur in simulated microgravity conditions. To reveal these mechanisms by simulated microgravity environment on soybean root, a proteomic analysis was conducted. Proteomic analysis revealed that among 1547 proteins, the abundances of proteins related to phytohormone, oxidative stress, ubiquitin/proteasome system, cell organization, and cell wall organization were altered under stimulated microgravity compared with gravity. Membrane-localized proteins and redox-related proteins were inversely correlated in protein numbers due to salt stress under gravity and the simulated microgravity condition. Proteins identified by proteomics were validated for protein accumulation by immunoblot analysis. Superoxide dismutase and ascorbate peroxidases, which are reactive oxygen species-scavenging proteins, increased in soybean root under salt stress but not in the simulated microgravity conditions even under stress. The accumulation of 45 kDa aquaporin and 70 kDa calnexin in soybean root under salt stress were increased in the simulated microgravity conditions compared to gravity. These findings suggest that soybean growth under salt stress may be regulated through improved water permeability, mitigation of reactive oxygen species production, and restoration of protein folding under simulated microgravity conditions.
-
Journal of Proteome Data and Methods 7 2 2025年4月 査読有り最終著者責任著者
MISC
192書籍等出版物
16-
The Chemical Biology of Long Noncoding RNAs. RNA Technologies, vol 11. Springer, Cham.ISBN 9783030447427 2020年10月
-
Myostatin: Structure, Role in Muscle Development and Health Implications. Nova Science publishers 2016年
講演・口頭発表等
119-
Joint Conference of the 22nd Annual Meeting of Asian Oceanian Myology Center and the 10th Annual Meeting of Japan Muscle Society (AOMC-JMS 2024) 2024年9月13日
-
FASEB Science Research Conferences, Biological Methylation: Fundamental Mechanisms 2024年7月30日
担当経験のある科目(授業)
11-
2020年4月 - 現在医学修士、生命科学特論 (藤田医科大学)
-
2013年4月 - 現在Human Biology (藤田保健衛生大学, 藤田医科大学)
-
2010年4月 - 現在病理学 (藤田医科大学)
-
2008年4月 - 現在大学院医学研究科 分子生物学技術講座 (藤田医科大学)
-
2007年4月 - 現在医療科学部卒業研究 (藤田医科大学)
Works(作品等)
1共同研究・競争的資金等の研究課題
29-
日本学術振興会 科学研究費助成事業 2024年4月 - 2027年3月
-
JADA/スポーツ庁(文部科学省) 2025年7月 - 2027年2月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
JADA/スポーツ庁(文部科学省) 2021年7月 - 2025年2月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2018年4月 - 2021年3月
その他
3-
① 筋萎縮抑制薬開発。 ② 多種類の筋萎縮誘導モデル、新規二分脊椎モデル。 ③ ヒト正常筋や動物由来の高品質・高純度の筋幹細胞、筋支持細胞の取得技術 その細胞を用いた薬剤探索(筋の脂肪化抑制、骨化抑制)の応用実績。 ④ 乳がん由来細胞を用いた、転移・接着性の分子機構解析(エクソソーム分泌、ホルモン感受性、接着分子制御など)。
-
教育内容・方法の工夫 医学部生や医療系コメディカルの講義を一部担当。講義内容の理解の助けとし、毎年改訂している。オンライン講義・対面講義の両方に工夫をしている。 医学部の少人数制の生物学の英語テキストの抄読会を行っている。 リサーチマインドを持った医学部学生のSRP(ステューデントリサーチャープログラム)で受け入れと研究指導を行なっている。 医療科学部卒論生の研究指導、発表会に向けた助言を行っている。
教育内容・方法の工夫(授業評価等を含む)
3-
件名病理学開始年月日2010/04/01概要毎年ファイルを改定し、理解度チェックを入れるなど工夫している。
-
件名Human Biology開始年月日2013/04/01概要医学部2年生の少人数制の英語抄読。医学英語力と発表能力のコンピタンス向上に向け、毎年工夫を凝らしている。2020年度はWeb講義として行っており、それに即した教育法を実践している。
-
件名医学修士開始年月日2020/04/01概要オンライン講義で、医学部以外の出身者が医学的知識をつけれるように、わかりやすい説明を心がけている。