医学部

安達 一英

アダチ カズヒデ  (adachi kazuhide)

基本情報

所属
藤田医科大学 医学部 医学科 脳神経外科学 准教授
学位
博士(医学)(慶応義塾大学大学院 医学研究科)

J-GLOBAL ID
201501013903589737
researchmap会員ID
7000012926

学歴

 2

論文

 103
  • Kei Yamashiro, Kazuhide Adachi, Saeko Higashiguchi, Eiji Fujiwara, Motoharu Hayakawa, Mitsushiro Hasegawa, Yuichi Hirose
    Acta neurochirurgica 167(1) 100-100 2025年4月7日  
    OBJECTIVE: Knowledge of the location of tumor-feeding arteries is necessary for the safe surgery of intracranial meningiomas. Hence, this retrospective study aimed to comprehensively analyze the distribution of tumor-feeding arteries. METHODS: Patients who underwent intracranial meningioma surgery at our institution between 2015 and 2023 were included in this study. The tumor attachment sites and tumor-feeding arteries were evaluated based on the results of preoperative examinations. The tumor attachment sites were classified as non-skull bases (convexity, parasagittal, and falx) or skull bases (anterior skull base, sphenoid ridge, sphenopetroclival, petrous, tentorial, cerebellar convexity, and foramen magnum). These tumors were further subdivided according to their attachment areas. RESULTS: Among the 180 patients included, the tumor-feeding arteries were identified in 177 patients (98.3%). In 67 patients with non-skull base meningiomas, the middle meningeal artery primarily functioned as a tumor-feeding artery in the anterior and middle regions (78 of 108 feeding arteries, 72.2%), while the extracranial artery served as a tumor-feeding artery in the posterior region (20 of 37 feeding arteries, 54.1%). Conversely, skull base meningiomas exhibited a higher frequency of having tumor-feeding arteries derived from the internal carotid artery (132 of 278 feeding arteries; 47.5%); these tumor-feeding arteries are often found at the deepest part of the surgical field during tumor resection and require careful intraoperative handling. CONCLUSIONS: Tumor-feeding arteries originate from different dural arteries depending on the tumor attachment site. These findings could help enhance surgical safety, especially in patients with meningiomas who have not undergone preoperative angiography.
  • Shigeo Ohba, Takao Teranishi, Kazuyasu Matsumura, Masanobu Kumon, Daijiro Kojima, Eiji Fujiwara, Kazutaka Nakao, Kiyonori Kuwahara, Kazuhiro Murayama, Eriel Sandika Pareira, Seiji Yamada, Masahiro Joko, Shunsuke Nakae, Jun Muto, Yuya Nishiyama, Kazuhide Adachi, Hikaru Sasaki, Masato Abe, Mitsuhiro Hasegawa, Yuichi Hirose
    Scientific reports 15(1) 1750-1750 2025年1月11日  
    Karnofsky Performance Status (KPS) is a widely used scale to assess performance status. KPS ≥ 50% implies that patients can live at home. Therefore, maintaining KPS ≥ 50% is important to improve the quality of life of patients with glioblastoma, whose median survival is less than 2 years. This study aimed to identify the factors associated with survival time with maintenance of KPS ≥ 50% (survival with KPS ≥ 50%) in patients with glioblastoma, IDH-wildtype. Ninety-eight patients with glioblastomas, IDH-wildtype, who were treated with concomitant radiotherapy (RT) and temozolomide (TMZ) followed by maintenance TMZ therapy, and whose KPS at the start of RT was ≥ 50%, were included. The median survival with KPS ≥ 50% was 13.3 months. In univariate analysis, preoperative KPS (≥ 80%), KPS at the start of RT (≥ 80%), residual tumor size (< 2 cm3), methylated MGMT promotor, and implantation of BCNU wafer were associated with survival with KPS ≥ 50%. In multivariate analysis, KPS at the start of RT (≥ 80%), methylated MGMT promotor, and residual tumor size (< 2 cm3) were significantly associated with increased survival with KPS ≥ 50%. A strategy of maximum possible tumor resection without compromising KPS is desirable to prolong the survival time with KPS ≥ 50%.
  • 大場 茂生, 須藤 保, 杉原 英志, 山田 勢至, 西山 悠也, 安達 一英, 河田 健司, 安部 雅人, 佐谷 秀行, 廣瀬 雄一
    Brain Tumor Pathology 41(Suppl.) 100-100 2024年5月  
  • Kei Yamashiro, Motoharu Hayakawa, Kazuhide Adachi, Mitsuhiro Hasegawa, Yuichi Hirose
    AJNR. American journal of neuroradiology 2024年1月30日  査読有り
    BACKGROUND AND PURPOSE: Tumor embolization through the meningohypophyseal trunk and inferolateral trunk is known to be effective in skull-based tumors; however, microcatheter cannulation into these arteries is difficult, and the number of cases that can be safely embolized is limited. In this study, we present a novel embolization procedure for meningohypophyseal trunk and inferolateral trunk using the distal balloon protection technique and detail its clinical efficacy and complication risks. We developed this procedure to allow safe embolization in patients who cannot be adequately cannulated with microcatheters into these arteries. MATERIALS AND METHODS: Patients who underwent meningohypophyseal trunk or inferolateral trunk embolization using the distal balloon protection technique for skull-based tumors at our institution between 2010 and 2023 were included. In this procedure, the ICA was temporarily occluded with a balloon at the ophthalmic artery bifurcation, the microcatheter was guided to the meningohypophyseal trunk or inferolateral trunk vicinity, and embolic particles were injected into the arteries. The balloon was deflated after the embolic particles, that had refluxed into the ICA, were aspirated. RESULTS: A total of 25 meningohypophyseal trunks and inferolateral trunks were embolized during 21 surgeries. Of these 25 arteries, only nine (36.0%) were successfully cannulated with microcatheters. Nevertheless, effective embolization was achieved in all cases. Permanent complications occurred in only one case (4.8%), in which the central retinal artery was occluded during inferolateral trunk embolization, resulting in a visual field defect. No permanent complications resulting from the embolic cerebral infarction were observed. Of 16 cases that underwent MRI within a week after embolization, however, 11 (68.8%) demonstrated embolic cerebral infarctions. CONCLUSIONS: In patients with skull-based tumors with meningohypophyseal trunk or inferolateal trunk feeders that cannot be catheterized directly, embolization using the distal balloon protection technique for tumor supply can be considered as a salvage technique. ABBREVIATIONS: MHT = meningohypophyseal trunk; ILT = inferolateral trunk; GC = guide catheter; AC = aspiration catheter; FR = flow reverse.
  • Yuya Nishiyama, Mitsuhiro Hasegawa, Kazuhide Adachi, Yuichi Hirose
    World neurosurgery 2024年1月6日  
    BACKGROUND: In >70% of patients with hemifacial spasm (HFS), the offending artery is either the anterior inferior cerebellar artery (AICA) or posterior inferior cerebellar artery (PICA), without a tortuous vertebrobasilar artery (VBA). We hypothesized that anchoring perforators around the root exit zone (REZ) of the AICA or PICA might induce vascular deviation and compression. We investigated the occurrence of these perforators from the AICA or PICA and the extent of VBA tortuosity to reveal the pathology of vascular compression. METHODS: This retrospective review included 110 patients after excluding those with vertebral artery (VA) compression alone. The occurrence of perforators was determined according to operative findings within 5 mm of the REZ, and VBA tortuosity was evaluated using MATLAB. We analyzed the association between perforators, VBA tortuosity, and the surgical implications. RESULTS: The occurrence of perforators from the offending AICA or PICA around the REZ was significantly higher in the group without VA compression (Group A) than in the group with VA compression (Group B). VBA tortuosity was significantly lower in Group A. VBA tortuosity was inversely correlated with the presence of AICA or PICA perforators in all 110 patients. Operative results were similar between the groups, although patients with low VBA tortuosity tended to require interposition in decompression procedures. CONCLUSIONS: Anchoring perforators around the REZ play a crucial role in vascular compression for patients with less tortuous VBAs. Moreover, surgeons should be prepared to deal with multiple perforators in a more complicated surgery in cases of less tortuous VBA.

MISC

 74

書籍等出版物

 1

講演・口頭発表等

 68

共同研究・競争的資金等の研究課題

 3