研究者業績
基本情報
- 所属
- 藤田医科大学 ばんたね病院 放射線部
- 学位
- 博士 (医療科学)(2021年3月 藤田医科大学)
- J-GLOBAL ID
- 201801014782712437
- researchmap会員ID
- 7000023653
免許・資格:診療放射線技師、第1種放射線取扱主任者、検診マンモグラフィ撮影認定診療放射線技師
研究キーワード
5研究分野
5経歴
2-
2022年4月 - 現在
-
2018年5月 - 2022年4月
学歴
2-
2018年4月 - 2021年3月
-
2016年4月 - 2018年3月
受賞
2論文
18-
Asian Pacific journal of cancer prevention : APJCP 23(4) 1315-1324 2022年4月 査読有りOBJECTIVE: It is essential to accurately diagnose and classify histological subtypes into adenocarcinoma (ADC), squamous cell carcinoma (SCC), and small cell lung carcinoma (SCLC) for the appropriate treatment of lung cancer patients. However, improving the accuracy and stability of diagnosis is challenging, especially for non-small cell carcinomas. The purpose of this study was to compare multiple deep convolutional neural network (DCNN) technique with subsequent additional classifiers in terms of accuracy and characteristics in each histology. METHODS: Lung cancer cytological images were classified into ADC, SCC, and SCLC with four fine-tuned DCNN models consisting of AlexNet, GoogLeNet (Inception V3), VGG16 and ResNet50 pretrained by natural images in ImageNet database. For more precise classification, the figures of 3 histological probabilities were further applied to subsequent machine learning classifiers using Naïve Bayes (NB), Support vector machine (SVM), Random forest (RF), and Neural network (NN). RESULTS: The classification accuracies of the AlexNet, GoogLeNet, VGG16 and ResNet50 were 74.0%, 66.8%, 76.8% and 74.0%, respectively. Well differentiated typical morphologies were tended to be correctly judged by all four architectures. However, poorly differentiated non-small cell carcinomas lacking typical structures were inclined to be misrecognized in some DCNNs. Regarding the histological types, ADC were best judged by AlexNet and SCC by VGG16. Subsequent machine learning classifiers of NB, SVV, RF, and NN improved overall accuracies to 75.1%, 77.5%, 78.2%, and 78.9%, respectively. CONCLUSION: Fine-tuning DCNNs in combination with additional classifiers improved classification of cytological diagnosis of lung cancer, although classification bias could be indicated among DCNN architectures.
-
Physical and Engineering Sciences in Medicine 2021年10月 査読有り
MISC
6-
電気・電子・情報関係学会東海支部連合大会講演論文集(CD-ROM) 2015 ROMBUNNO.PO1-52 2015年9月18日
書籍等出版物
1-
Switzerland; Springer Nature Switzerland AG 2019年
講演・口頭発表等
58-
Examination of usefulness of Large Field of View with Reverse encoding Distortion Correction EPI-DWI第79回日本放射線技術学会総会学術大会 2023年4月
担当経験のある科目(授業)
5所属学協会
4共同研究・競争的資金等の研究課題
1-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月