Curriculum Vitaes
Profile Information
- Affiliation
- Senior Assistant professor, Division of Behavioral Neuropharmacology, Mind-Brain Research and Innovation center for Drug Generation, Fujita Health University(Concurrent)Senior Assistant professor, International Center for Brain Science (ICBS)
- Degree
- 博士(医学)(名古屋大学)
- J-GLOBAL ID
- 201801016646986372
- researchmap Member ID
- 7000027043
Research Interests
5Research Areas
2Research History
7-
Jan, 2025 - Jun, 2025
Education
2Committee Memberships
8-
Nov, 2024 - Present
-
Jan, 2024 - Present
-
Aug, 2025 - Aug, 2025
Awards
4-
Nov, 2020
-
Feb, 2017
-
Aug, 2016
Papers
31-
Molecular brain, 18(1) 83-83, Nov 6, 2025Tau hyperphosphorylation has been considered a major contributor to neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia, and related tauopathies have gained prominence in the development of therapies for these conditions. Glial responses are key features of AD and frontotemporal dementia, and are associated with neuroinflammation. Numerous transgenic mouse models that recapitulate critical AD-like pathology and cognitive impairment have been developed to examine pathogenic mechanisms and evaluate therapeutic approaches targeting tau and glial reactivity. Glial reactivity and neuroinflammation coincide with tau hyperphosphorylation, which induces behavioral impairment; however, the specific correlation between glial cell activation and abnormal behavior remains unknown. In this study, we investigated changes in glial cell gene expressions related to abnormal behaviors in rTg4510 mice, which phenocopy the tau pathology, neuroinflammation, and neurodegeneration observed in human tauopathies. Both 4- and 6-month-old rTg4510 mice displayed significantly impaired nest-building behavior compared with control mice. Paired association learning was also impaired in 4-month-old rTg4510 mice. Moreover, rTg4510 mice of both age groups exhibited abnormal exploratory behavior, and these mice spent a longer time in the open arms of the plus-maze test than control mice. Using a magnetic-activated cell-sorting technique, we analyzed glial cell gene expressions related to neuroinflammation, phagocytosis, and amyloid synthesis in the prefrontal cortex of rTg4510 mice. Regression analysis of glial gene expressions and behavioral tests revealed that various glial reactivities were associated with behavioral abnormalities. Our findings suggest specific genetic characteristics of glial cells that may lead to abnormal behavior in rTg4510 mice.
-
Behavioural brain research, 496 115832-115832, Sep 17, 2025Systemic immune challenge can also cause neuropsychiatric abnormalities. Interferon-induced transmembrane protein 3 (IFITM3) plays a crucial role in cellular immune defense. Previously, we have demonstrated that IFITM3 affects neurodevelopment during the early developmental stage in mice, acting through innate immune activation. However, the pathophysiological significance of IFITM3 in immune system activation in adulthood remains unclear. To address this issue, we aimed to analyze the expression level of IFITM3 in the brain and the behavioral abnormalities in polyriboinosinic-polyribocytidylic acid (polyI:C)-treated adult male C57/BL6J wild-type (WT) and Ifitm3-/- mice. The expression levels of Ifitm3 mRNA and protein were significantly upregulated in the medial prefrontal cortex (mPFC), striatum, and hippocampus 24 h after polyI:C treatment in WT mice compared to saline-treated control mice. Furthermore, behavioral experiments revealed that polyI:C treatment induced cognitive dysfunction and anhedonia in WT mice, whereas Ifitm3-/- mice were resistant to these disorders. In conclusion, our results demonstrated that in adult mice, immune activation following polyI:C treatment may induce cognitive dysfunction and anhedonia through IFITM3 upregulation in the brain. These results suggest that IFITM3 is an attractive therapeutic target for neuropsychiatric dysfunction following immune activation in adulthood.
-
Scientific reports, 15(1) 14702-14702, Apr 27, 2025Alzheimer's disease (AD) is the leading neurodegenerative disease manifesting cognitive impairment. Its procession is regulated by activated glial cell-mediated neuroinflammation. Although estrogen deprivation is a known risk factor for AD in females, the impact of androgen deprivation on AD pathology in males, particularly regarding neuroinflammation, remains unclear. This study investigates the effects of long-term systemic androgen deprivation on AD pathology, including glial cell-specific gene expression, amyloid β (Aβ) pathology, and cognitive function in male castrated AppNL-G-F/NL-G-F (App) mice. We found significantly reduced androgen receptor (AR/Ar) expression levels in the precunei of male patients with early AD pathology and isolated brain microglia of male App mice compared with their nonpathological controls. In castrated App mice, microglial Tnf and Il6 and astrocytic Socs3 were downregulated, indicating that androgens may promote inflammation in the brain. However, Aβ accumulation and cognitive function were unaffected. These results suggest that although systemic androgen deprivation modulates neuroinflammation, the changes are insufficient to alter the AD phenotype or pathology in male App mice.
-
Cell death & disease, 15(11) 858-858, Nov 26, 2024 Peer-reviewedLead authorAlzheimer's disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid β (Aβ) and phosphorylated tau. Neuroinflammation, mainly mediated by glial activation, plays an important role in AD progression. Although there is growing evidence for the anti-neuroinflammatory and neuroprotective effects of the cannabinoid system modulation, the detailed mechanism remains unclear. To address these issues, we analyzed the expression levels of cannabinoid receptor type II (Cnr2/Cb2) in AppNL-G-F/NL-G-F mice and human AD precuneus, which is vulnerable to amyloid deposition in AD, and the effects of JWH 133, a selective CB2 agonist, on neuroinflammation in primary glial cells and neuroinflammation and cognitive impairment in AppNL-G-F/NL-G-F mice. The levels of Cnr2/Cb2 were upregulated in microglia isolated from the cerebral cortex of AppNL-G-F/NL-G-F mice. CNR2 expression was also increased in RNAs derived from human precuneus with advanced AD pathology. Chronic oral administration of JWH 133 significantly ameliorated the cognitive impairment of AppNL-G-F/NL-G-F mice without neuropsychiatric side effects. Microglia and astrocyte mRNAs were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, and the gene expression was determined by quantitative PCR. JWH 133 administration significantly decreased reactive astrocyte markers and microglial C1q, an inducer for the reactive astrocytes in AppNL-G-F/NL-G-F mice. In addition, JWH133 administration inhibited the expression of p-STAT3 (signal transducer and activator of transcription 3) in astrocytes in AppNL-G-F/NL-G-F mice. Furthermore, JWH 133 administration suppressed dystrophic presynaptic terminals surrounding amyloid plaques. In conclusion, stimulation of microglial CB2 ameliorates cognitive dysfunction in AppNL-G-F/NL-G-F mice by controlling astrocyte activation and inducing beneficial neuroinflammation, and our study has implications that CB2 may represent an attractive therapeutic target for the treatment of AD and perhaps other neurodegenerative diseases involving neuroinflammation.
-
Translational psychiatry, 14(1) 216-216, May 28, 2024 Peer-reviewedGenetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.
Misc.
37-
日本臨床精神神経薬理学会・日本神経精神薬理学会合同年会プログラム・抄録集, 28回・48回 131-131, Nov, 2018
-
Genes, Brain and Behavior, 17(8) e12478, Nov, 2018
-
Scientific reports, 8(1) 13046-13046, Aug 29, 2018 Peer-reviewedReelin protein (RELN), an extracellular matrix protein, plays multiple roles that range from embryonic neuronal migration to spine formation in the adult brain. Results from genetic studies have suggested that RELN is associated with the risk of psychiatric disorders, including schizophrenia (SCZ). We previously identified a novel exonic deletion of RELN in a patient with SCZ. High-resolution copy number variation analysis revealed that this deletion included exons 52 to 58, which truncated the RELN in a similar manner to the Reln Orleans mutation (Relnrl-Orl). We examined the clinical features of this patient and confirmed a decreased serum level of RELN. To elucidate the pathophysiological role of the exonic deletion of RELN in SCZ, we conducted behavioral and neurochemical analyses using heterozygous Relnrl-Orl/+ mice. These mice exhibited abnormalities in anxiety, social behavior, and motor learning; the deficits in motor learning were ameliorated by antipsychotics. Methamphetamine-induced hyperactivity and dopamine release were significantly reduced in the Relnrl-Orl/+ mice. In addition, the levels of GABAergic markers were decreased in the brain of these mice. Taken together, our results suggest that the exonic deletion of RELN plays a pathological role, implicating functional changes in the dopaminergic and GABAergic systems, in the pathophysiology of SCZ.
-
Glia, 66(5) 1034-1052, May, 2018 Peer-reviewedIn the central nervous system, major histocompatibility complex class I (MHCI) molecules are mainly expressed in neurons, and neuronal MHCI have roles in synapse elimination and plasticity. However, the pathophysiological significance of astroglial MHCI remains unclear. We herein demonstrate that MHCI expression is up-regulated in astrocytes in the medial prefrontal cortex (mPFC) following systemic immune activation by an intraperitoneal injection of polyinosinic-polycytidylic acid (polyI:C) or hydrodynamic interferon (IFN)-γ gene delivery in male C57/BL6J mice. In cultured astrocytes, MHCI/H-2D largely co-localized with exosomes. To investigate the role of astroglial MHCI, H-2D, or sH-2D was expressed in the mPFC of male C57/BL6J mice using an adeno-associated virus vector under the control of a glial fibrillary acidic protein promoter. The expression of astroglial MHCI in the mPFC impaired sociability and recognition memory in mice. Regarding neuropathological changes, MHCI expression in astrocytes significantly activated microglial cells, decreased parvalbumin-positive cell numbers, and reduced dendritic spine density in the mPFC. A treatment with GW4869 that impairs exosome synthesis ameliorated these behavioral and neuropathological changes. These results suggest that the overexpression of MHCI in astrocytes affects microglial proliferation as well as neuronal numbers and spine densities, thereby leading to social and cognitive deficits in mice, possibly via exosomes created by astrocytes.
-
次世代を担う若手医療薬科学シンポジウム抄録集, 12th, 2018
-
INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 19 185-185, Jun, 2016
-
JOURNAL OF PHARMACOLOGICAL SCIENCES, 127(4) 439-445, Apr, 2015 Peer-reviewed
-
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 46 86-91, Oct, 2013 Peer-reviewed
Presentations
75Teaching Experience
4-
Sep, 2025 - Dec, 2025薬理学 (愛知県立総合看護専門学校)
-
Jun, 2025 - Jun, 2025Interprofessional Education (Nagoya City University)
-
Dec, 2021 - Dec, 2024CIBoG卓越大学院 生命医科学基礎 (名古屋大学)
-
Oct, 2018 - Dec, 2024基盤医科学実習 (名古屋大学)
Professional Memberships
6Research Projects
6-
Medical Research Grants, Takeda Science Foundation, Jul, 2025 - May, 2028
-
科学研究費助成事業 若手研究, 日本学術振興会, Apr, 2023 - Mar, 2026
-
科学研究費助成事業 国際共同研究加速基金(国際共同研究強化(B)), 日本学術振興会, Oct, 2019 - Mar, 2024
-
科学研究費助成事業 若手研究, 日本学術振興会, Apr, 2020 - Mar, 2023
-
第30回研究費助成, 公益財団法人堀科学芸術振興財団, Apr, 2022 - Mar, 2023