研究者業績
基本情報
- 所属
- 藤田医科大学 国際再生医療センター センター長、特命教授(兼任)研究統括監理部 特命教授 (統括学術プログラムディレクター)
- 学位
- 医学博士(名古屋大学)
- 連絡先
- masahide.takahashi
fujita-hu.ac.jp - J-GLOBAL ID
- 200901036145308243
- researchmap会員ID
- 1000023347
研究分野
1経歴
5-
2020年4月 - 現在
-
2020年4月 - 現在
-
2017年4月 - 2020年3月
-
2013年4月 - 2020年3月
-
2004年10月 - 2013年3月
学歴
2-
- 1983年3月
-
- 1979年3月
受賞
8-
2020年11月
-
2020年2月
-
2019年11月
-
2010年5月
-
2006年3月
論文
239-
Epilepsia 2024年12月15日Abstract Objective Loss‐of‐function mutations in the GIRDIN/CCDC88A gene cause developmental epileptic encephalopathy (DEE) in humans. However, its pathogenesis is largely unknown. Global knockout mice of the corresponding orthologous gene (gKOs) have a preweaning lethal phenotype with growth failure, preventing longitudinal analysis. We aimed to overcome this lethality and elucidate DEE pathogenesis. Methods We developed a novel lifelong feeding regimen (NLFR), which consists of providing mash food from postnatal day 14 (P14) until weaning (P28), followed by agar‐bound food exclusively after weaning. Videography, electroencephalography (EEG), and histological analyses were performed. Conditional Girdin/Ccdc88a knockout mice (cKOs) of variable lineages (Nestin, Emx1, or Nkx2‐1) were generated to identify the region responsible for epilepsy. Results Under the NLFR, gKOs survived beyond 1 year and displayed fully penetrant, robust epileptic phenotypes, including early‐onset (P22.3 in average) generalized tonic–clonic seizures (GTCSs) (averaging eight per day), which were completely synchronized with fast rhythms on EEG, frequent interictal electroencephalographic spikes (averaging 430 per hour), and progressive deformation of visceral organs. In addition, gKOs had absence seizures, which were not always time‐locked to frequent spike waves on EEG. The frequent GTCSs and interictal spikes in gKOs were suppressed by known antiepileptic drugs. Histologically, bilateral hippocampi in gKOs exhibited congenital cornu‐ammonis splitting, granule cell dispersion, and astrogliosis. Furthermore, analysis of conditional knockouts using multiple Cre‐deleters identified a defect in the delivery of interneuron precursors from the medial ganglionic eminence into the hippocampal primordium during embryogenesis as a major cause of epileptogenesis. Significance These findings give rise to a new approach of lifelong caregiving to overcome the problem of preweaning lethality in animal models. We propose a useful model for studying DEE with hippocampal sclerosis and interneuronopathy. gKOs with NLFR combine the contradictory properties of robust epileptic phenotypes and long‐term survivability, which can be used to investigate spontaneous epileptic wave propagation and therapeutic intervention in hippocampal sclerosis.
-
Journal of immunology (Baltimore, Md. : 1950) 212(7) 1221-1231 2024年4月1日Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-β plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-β signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-β have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-β receptor I and negatively regulates TGF-β signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-β signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-β signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.
-
The Journal of pathology 2023年10月5日Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.
-
Pathology, research and practice 245 154443-154443 2023年5月Osteosarcoma, the most common primary malignant bone tumor, is defined by the formation of neoplastic osteoid and/or bone. This sarcoma is a highly heterogeneous disease with a wide range of patient outcomes. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in various types of malignant tumors. We previously reported that CD109 is expressed in osteoblasts and osteoclasts in normal human tissues and plays a role in bone metabolism in vivo. While CD109 has been shown to promote various carcinomas through the downregulation of TGF-β signaling, the role and mechanism of CD109 in sarcomas remain largely unknown. In this study, we investigated the molecular function of CD109 in sarcomas using osteosarcoma cell lines and tissue. Semi-quantitative immunohistochemical analysis using human osteosarcoma tissue revealed a significantly worse prognosis in the CD109-high group compared with the CD109-low group. We found no association between CD109 expression and TGF-β signaling in osteosarcoma cells. However, enhancement of SMAD1/5/9 phosphorylation was observed in CD109 knockdown cells under bone morphogenetic protein-2 (BMP-2) stimulation. We also performed immunohistochemical analysis for phospho-SMAD1/5/9 using human osteosarcoma tissue and found a negative correlation between CD109 expression and SMAD1/5/9 phosphorylation. In vitro wound healing assay showed that osteosarcoma cell migration was significantly attenuated in CD109-knockdown cells compared with control cells in the presence of BMP. These results suggest that CD109 is a poor prognostic factor in osteosarcoma and affects tumor cell migration via BMP signaling.
-
American journal of respiratory cell and molecular biology 68(2) 201-212 2022年10月10日 査読有りAsthma is a chronic airway inflammatory disease characterized by airway hyperreactivity (AHR) and eosinophilic airway inflammation. Dendritic cells (DCs) are essential for the development of asthma via presenting allergens, causing Th2 skewing and eosinophil inflammation. Recent studies have revealed that CD109, a glycosylphosphatidylinositol-anchored glycoprotein, is involved in the pathogenesis of inflammatory diseases such as rheumatoid arthritis and psoriasis. However, no study has addressed the role of CD109 in asthma. This study sought to address the role of CD109 on DCs in the development of AHR and allergic inflammation. CD109 deficient mice (CD109-/- mice) were sensitized with house dust mite (HDM) or ovalbumin and compared to wild-type (WT) mice for induction of AHR and allergic inflammation. CD109-deficient mice had reduced AHR and eosinophilic inflammation together with lower Th2 cytokine expression compared to WT mice. Interestingly, CD109 expression was induced in lung conventional DC2s (cDC2s), but not lung cDC1s, upon allergic challenge. Lung cDC2s from CD109-/- mice had a poor ability to induce cytokine production in ex vivo DC-T cell cocultures with high expression of RUNX3, resulting in suppression of Th2 differentiation. Adoptive transfer of bone-marrow-derived CD109-/- DCs loaded with HDM failed to develop AHR and eosinophilic inflammation. Finally, administration of monoclonal anti-CD109 antibody reduced airway eosinophils and significantly decreased AHR. Our results suggest the involvement of CD109 in asthma pathogenesis. CD109 is a novel therapeutic target for asthma.
-
Life Science Alliance 5(6) e202101230-e202101230 2022年6月Cancer-associated fibroblasts (CAFs) are an integral component of the tumor microenvironment (TME). Most CAFs shape the TME toward an immunosuppressive milieu and attenuate the efficacy of immune checkpoint blockade (ICB) therapy. However, the detailed mechanism of how heterogeneous CAFs regulate tumor response to ICB therapy has not been defined. Here, we show that a recently defined CAF subset characterized by the expression of Meflin, a glycosylphosphatidylinositol-anchored protein marker of mesenchymal stromal/stem cells, is associated with survival and favorable therapeutic response to ICB monotherapy in patients with non-small cell lung cancer (NSCLC). The prevalence of Meflin-positive CAFs was positively correlated with CD4-positive T-cell infiltration and vascularization within non-small cell lung cancer tumors. Meflin deficiency and CAF-specific Meflin overexpression resulted in defective and enhanced ICB therapy responses in syngeneic tumors in mice, respectively. These findings suggest the presence of a CAF subset that promotes ICB therapy efficacy, which adds to our understanding of CAF functions and heterogeneity.
-
Virchows Archiv : an international journal of pathology 480(4) 819-829 2022年4月CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, whose expression is upregulated in some types of malignant tumors. High levels of CD109 in tumor cells have been reported to correlate with poor prognosis; however, significance of CD109 stromal expression in human malignancy has not been elucidated. In this study, we investigated the tumorigenic properties of CD109 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis of 92 PDAC surgical specimens revealed that positive CD109 expression in tumor cells was significantly associated with poor prognosis (disease-free survival, p = 0.003; overall survival, p = 0.002), and was an independent prognostic factor (disease-free survival, p = 0.0173; overall survival, p = 0.0104) in PDAC. Furthermore, CD109 expression was detected in the stroma surrounding tumor cells, similar to that of α-smooth muscle actin, a histological marker of cancer-associated fibroblasts. The stromal CD109 expression significantly correlated with tumor progression in PDAC (TNM stage, p = 0.033; N factor, p = 0.024; lymphatic invasion, p = 0.028). In addition, combined assessment of CD109 in tumor cells and stroma could identify the better prognosis group of patients from the entire patient population. In MIA PaCa-2 PDAC cell line, we demonstrated the involvement of CD109 in tumor cell motility, but not in PANC-1. Taken together, CD109 not only in the tumor cells but also in the stroma is involved in the progression and prognosis of PDAC, and may serve as a useful prognostic marker in PDAC.
-
Gastroenterology 162(3) 890-906 2022年3月BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor β was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.
-
Pathology international 72(3) 161-175 2022年3月Cancer-associated fibroblasts (CAFs), a compartment of the tumor microenvironment, were previously thought to be a uniform cell population that promotes cancer progression. However, recent studies have shown that CAFs are heterogeneous and that there are at least two types of CAFs, that is, cancer-promoting and -restraining CAFs. We previously identified Meflin as a candidate marker of cancer-restraining CAFs (rCAFs) in pancreatic ductal adenocarcinoma (PDAC). The precise nature of rCAFs, however, has remained elusive owing to a lack of understanding of their comprehensive gene signatures. Here, we screened genes whose expression correlated with Meflin in single-cell transcriptomic analyses of human cancers. Among the identified genes, we identified matrix remodeling-associated protein 8 (MXRA8), which encodes a type I transmembrane protein with unknown molecular function. Analysis of MXRA8 expression in human PDAC samples showed that MXRA8 was differentially co-expressed with other CAF markers. Moreover, in patients with PDAC or syngeneic tumors developed in MXRA8-knockout mice, MXRA8 expression did not affect the roles of CAFs in cancer progression, and the biological importance of MXRA8+ CAFs is still unclear. Overall, we identified MXRA8 as a new CAF marker; further studies are needed to determine the relevance of this marker.
-
Polish Journal of Veterinary Sciences 25(1) 75-82 2022年
-
Scientific Reports 11(1) 20224-20224 2021年12月 査読有り<title>Abstract</title>The V-shaped arrangement of hair bundles on cochlear hair cells is critical for auditory sensing. However, regulation of hair bundle arrangements has not been fully understood. Recently, defects in hair bundle arrangement were reported in postnatal Dishevelled-associating protein (ccdc88c, alias Daple)-deficient mice. In the present study, we found that adult <italic>Daple</italic>−/− mice exhibited hearing disturbances over a broad frequency range through auditory brainstem response testing. Consistently, distorted patterns of hair bundles were detected in almost all regions, more typically in the basal region of the cochlear duct. In adult <italic>Daple</italic>−/− mice, apical microtubules were irregularly aggregated, and the number of microtubules attached to plasma membranes was decreased. Similar phenotypes were manifested upon nocodazole treatment in a wild type cochlea culture without affecting the microtubule structure of the kinocilium. These results indicate critical role of Daple in hair bundle arrangement through the orchestration of apical microtubule distribution, and thereby in hearing, especially at high frequencies.
-
Frontiers in Cell and Developmental Biology 9 749924-749924 2021年10月5日 筆頭著者Fibroblasts synthesise the extracellular matrix (ECM) such as collagen and elastin, the excessive accumulation of which can lead to fibrosis and organ dysfunction under pathological conditions. Cancer-associated fibroblasts (CAFs) are major constituents of the tumour microenvironment (TME) that accompany the desmoplastic reaction responsible for anti-cancer treatment resistance. Thus, it is important to dissect the roles of CAFs in the TME to develop new therapeutic strategies for refractory cancers. Recent progress in the studies of CAF biology suggests that the functions of CAFs are complicated and that they are composed of functionally distinct populations, including cancer-promoting CAFs (pCAFs) and cancer-restraining CAFs (rCAFs). We recently identified a new cell surface marker for rCAFs in pancreatic and colon cancers, designated as Meflin (mesenchymal stromal cell- and fibroblast-expressing Linx paralogue)/Islr (immunoglobulin super family containing leucine-rich repeat). Based on the distribution of Meflin/Islr-positive cells, we also considered it a specific candidate marker for mesenchymal stroma/stem cells. Meflin/Islr-positive CAFs have been shown to suppress cancer progression by being involved in regulating collagen structures and BMP signalling in the TME. This review describes the function of Meflin/Islr in cancer fibrosis as well as in cardiac and lung fibrosis and its potential in the development of new cancer therapeutics.
-
Journal of visualized experiments : JoVE (175) 2021年9月3日Hepatic metastasis of colorectal cancer (CRC) is a leading cause of cancer-related death. Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play a crucial role in metastatic CRC progression and predict poor patient prognosis. However, there is a lack of satisfactory mouse models to study the crosstalk between metastatic cancer cells and CAFs. Here, we present a method to investigate how liver metastasis progression is regulated by the metastatic niche and possibly could be restrained by stroma-directed therapy. Portal vein injection of CRC organoids generated a desmoplastic reaction, which faithfully recapitulated the fibroblast-rich histology of human CRC liver metastases. This model was tissue-specific with a higher tumor burden in the liver when compared to an intra-splenic injection model, simplifying mouse survival analyses. By injecting luciferase-expressing tumor organoids, tumor growth kinetics could be monitored by in vivo imaging. Moreover, this preclinical model provides a useful platform to assess the efficacy of therapeutics targeting the tumor mesenchyme. We describe methods to examine whether adeno-associated virus-mediated delivery of a tumor-inhibiting stromal gene to hepatocytes could remodel the tumor microenvironment and improve mouse survival. This approach enables the development and assessment of novel therapeutic strategies to inhibit hepatic metastasis of CRC.
-
Journal of Cell Biology 220(7) 2021年7月5日 査読有りMulticiliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)–dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.
-
Genes to Cells 26(7) 495-512 2021年7月
-
The European respiratory journal 58(6) 2021年5月28日The prognosis of elderly individuals with idiopathic pulmonary fibrosis (IPF) remains poor. Fibroblastic foci, in which aggregates of proliferating fibroblasts and myofibroblasts are involved, are the pathological hallmark lesions in IPF to represent focal areas of active fibrogenesis. Fibroblast heterogeneity in fibrotic lesions hampers the discovery of the pathogenesis of pulmonary fibrosis. Therefore, to determine of the pathogenesis of IPF, identification of functional fibroblasts is warranted. This study was aimed to determine the role of fibroblasts positive for meflin, identified as a potential marker for mesenchymal stromal cells, during the development of pulmonary fibrosis. We characterised meflin-positive cells in a single cell atlas established by single-cell RNA sequencing (scRNA-seq)-based profiling of 243 472 cells from 32 IPF lungs and 29 normal lung samples. scRNA-seq combined with in situ RNA hybridisation identified proliferating fibroblasts positive for meflin in fibroblastic foci, not dense fibrosis, of fibrotic lungs in IPF patients. We determined the role of fibroblasts positive for meflin using bleomycin (BLM)-induced pulmonary fibrosis. A BLM-induced lung fibrosis model for meflin-deficient mice showed that fibroblasts positive for meflin had anti-fibrotic property to prevent pulmonary fibrosis. Although transforming growth factor-β-induced fibrogenesis and cell senescence with senescence-associated secretory phenotype were exacerbated in fibroblasts via the repression or lack of meflin, these were inhibited in meflin-deficient fibroblasts with meflin reconstitution. These findings provide evidence to show the biological importance of meflin expression on fibroblasts and myofibroblasts in the active fibrotic region of pulmonary fibrosis.
-
Science Translational Medicine 13(593) 2021年5月12日
-
Oral Diseases 27(3) 439-447 2021年4月
-
Cancer Science 112(4) 1614-1623 2021年4月
-
Gastroenterology 160(4) 1224-1239.e30 2021年3月
-
Cancer Medicine 10(4) 1335-1346 2021年2月
-
Journal of Biological Chemistry 296 2021年1月1日
-
Cancer Science 111(12) 4616-4628 2020年12月
-
Biochemical and Biophysical Research Communications 532(3) 406-413 2020年11月12日
-
Cancer Science 111(11) 4303-4317 2020年11月1日
-
Cancer Letters 489 100-110 2020年10月1日
-
Cell and Tissue Research 382(1) 113-123 2020年10月1日
-
Journal of Clinical Oncology 38(15_suppl) 3118-3118 2020年5月20日3118 Background: Tumor immunity is regulated by complex interactions between cancer and immune cells, which also involves other components of the tumor microenvironment (TME). Recently, cancer-associated fibroblasts (CAFs), a major constituent of the TME, have emerged as important regulators of tumor immunity. Specifically, for example, α-smooth muscle actin or leucine-rich repeat containing 15-positive CAFs have been shown to be crucial for the suppression of tumor immunity. However, a comprehensive picture of how other CAF subset(s) are involved in tumor immunity is still lacking. Here, we show the involvement of a CAF subset highly expressing Meflin, which was recently identified as a marker of cancer-restraining CAFs in pancreatic cancer (Mizutani et al., Cancer Res, 2019), in the response of non-small cell lung cancer (NSCLC) patients to immune checkpoint inhibitors (ICIs). Methods: A sample cohort of 122 subjects with NSCLC who had received ICI monotherapy with nivolumab, pembrolizumab, or atezolizumab was identified at the Department of Respiratory Medicine at Nagoya University Hospital. We selected 92 eligible patients, collected formalin-fixed paraffin-embedded tumor tissues, and prepared 4–µm-thick slides for the analysis of Meflin expression by RNA-in situ hybridization assay, followed by the evaluation of treatment response of 88 patients using the iRECIST criteria. We assessed the number of Meflin-positive CAFs and divided the patients into Meflin-High (20% and more CAFs express Meflin) and -Low groups. The cut-off value was obtained by the ROC analysis. Primarily, objective response rate (ORR) was compared between Meflin-High and –Low groups. Overall survival (OS), and progression free survival (PFS) were also assessed. Results: Patients who started to receive ICIs till the end of March 2019 were enrolled and followed-up until the end of 2019. Analysis of the tumor tissues revealed that 24 (40.7%) of 59 Meflin-High patients responded to the ICI monotherapy. In contrast, none (0%) of 29 Meflin-Low patients showed any significant response (p-value: 0.0000174). Meflin-High groups showed statistically significant prolongations in both OS and PFS with the hazard ratios of 0.3114 [0.1591-0.6094] and 0.3997 [0.2290-0.6976], respectively. Conclusions: This retrospective observation indicated that the high infiltration of Meflin-positive CAFs may shape tumor-suppressive immune response and increase the sensitivity to ICIs, which differs from those of other CAF subsets.
-
Cancer Science 111(4) 1047-1057 2020年4月
-
日本病理学会会誌 109(1) 323-323 2020年3月
-
Anticancer Research 40(1) 201-211 2020年
-
日本癌学会総会記事 78回 P-2128 2019年9月
-
日本癌学会総会記事 78回 E-3001 2019年9月
-
Circulation research 125(4) 414-430 2019年8月2日 査読有り
-
Cancer research 79(20) 5367-5381 2019年8月 査読有り
-
Biochemical and biophysical research communications 513(1) 28-34 2019年5月 査読有り
-
Pathology international 69(5) 249-259 2019年5月 査読有り
MISC
211-
Journal of Pathology 244(4) 469-478 2018年4月1日 査読有り
-
Pathology International 68(4) 241-245 2018年4月1日 査読有り
-
Mammalian Genome 29(3-4) 273-280 2018年4月1日 査読有り
-
PLoS biology 16(3) e2005090 2018年3月Amino acid signaling mediated by the activation of mechanistic target of rapamycin complex 1 (mTORC1) is fundamental to cell growth and metabolism. However, how cells negatively regulate amino acid signaling remains largely unknown. Here, we show that interaction between 4F2 heavy chain (4F2hc), a subunit of multiple amino acid transporters, and the multifunctional hub protein girders of actin filaments (Girdin) down-regulates mTORC1 activity. 4F2hc interacts with Girdin in mitogen-activated protein kinase (MAPK)- and amino acid signaling-dependent manners to translocate to the lysosome. The resultant decrease in cell surface 4F2hc leads to lowered cytoplasmic glutamine (Gln) and leucine (Leu) content, which down-regulates amino acid signaling. Consistently, Girdin depletion augments amino acid-induced mTORC1 activation and inhibits amino acid deprivation-induced autophagy. These findings uncovered the mechanism underlying negative regulation of amino acid signaling, which may play a role in tightly regulated cell growth and metabolism.
書籍等出版物
32講演・口頭発表等
5-
International Symposium on Nanomedicine 2014年1月13日
-
1st International Symposium on Protein Modifications in Pathogenic Dysregulation of Signaling 2013年2月1日
-
Global Center of Excellence (COE) Program, The 4th International Symposium 2012年11月15日
-
Global center of excellence (COE) Program, the 3rd International Symposium 2011年12月8日
-
Wihship Cancer Institute, Elkin Lecture Series 2011年4月8日
共同研究・競争的資金等の研究課題
46-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2019年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 2014年4月 - 2019年3月
-
日本学術振興会 科学研究費助成事業 2013年4月 - 2017年3月