研究者業績
基本情報
- 所属
- 藤田医科大学 医学部 放射線診断学 臨床教授 (臨床教授)
- 学位
- 博士(医学)(2002年11月 神戸大学)
- J-GLOBAL ID
- 200901078818777482
- researchmap会員ID
- 1000325228
研究分野
1論文
176-
画像診断 45(1) 35-37 2024年12月25日
-
Magnetic resonance imaging 114 110240-110240 2024年12月PURPOSE: The purpose of this study was to determine the capability of proton density with fat fraction (PD-FFQ) imaging to help assess hematopoietic ability and diagnose aplastic anemia in adults. METHODS: Between January 2021 and March 2023, patients diagnosed with aplastic anemia (AA: n = 14) or myelodysplastic syndrome (MDS: n = 14) were examined by whole-body PD-FFQ imaging, and 14 of 126 age and gender matched patients who had undergone the same PD-FFQ imaging were selected as control group. All proton density fat fraction (PDFF) index evaluations were then performed by using regions of interest (ROIs). Pearson's correlation was used to determine the relationship between blood test results and each quantitative index, and ROC-based positive test and discrimination analyses to compare capability to differentiate the AA from the non-AA group. Finally, sensitivity, specificity and accuracy of all quantitative indexes were compared by means of McNemar's test. RESULTS: Mean PDFF, standard deviation (SD) and percentage of coefficient of variation (%CV) for vertebrae showed significant correlation with blood test results (-0.52 ≤ r ≤ -0.34, p < 0.05). Specificity (SP) and accuracy (AC) of %CV of PDFF in vertebrae were significantly higher than those of mean PDFF in vertebrae and the posterior superior iliac spine (SP: p = 0.0002, AC: p = 0.0001) and SD of PDFF in vertebrae (SP: p = 0.008, AC: p = 0.008). Moreover, AC of SD of PDFF in vertebrae was significantly higher than that of mean PDFF in vertebrae and the posterior superior iliac spine (p = 0.03). CONCLUSION: Whole-body PD-FFQ imaging is useful for hematopoietic ability assessment and diagnosis of aplastic anemia in adults.
-
Journal of computer assisted tomography 2024年11月5日OBJECTIVE: The purpose of this study was to compare radiation dose reduction capability for accurate liver tumor measurements of a computer-aided volumetry (CADv) software for filtered back projection (FBP), hybrid-type iterative reconstruction (IR), mode-based iterative reconstruction (MBIR), and deep learning reconstruction (DLR) at a phantom study. METHODS: A commercially available anthropomorphic abdominal phantom was scanned five times with a 320-detector row CT at 600 mA, 400 mA, 200 mA, and 100 mA and reconstructed by four methods. Signal-to-noise ratios (SNRs) of all lesions within the arterial and portal-venous phase inserts were calculated, and SNR of the lesion phantom was compared with that of all reconstruction methods by means of Tukey's honestly significant difference (HSD) test. Then, tumor volume (V) of each nodule was automatically measured using commercially available CADv software. To compare dose reduction capability for each reconstruction method at both phases, mean differences between measured V and standard references were compared by Tukey's honestly significant difference test among the four different reconstruction methods on CT obtained at each of the four tube currents. RESULTS: With each of the tube currents, SNRs for MBIR and DLR were significantly higher than those for FBP and hybrid-type IR (p < 0.05). At the arterial phase, the mean difference in V for the CT protocol obtained at 600 or 100 mA and reconstructed with DLR was significantly smaller than that for others (p < 0.05). At the portal-venous phase, the mean differences in V for the CT protocol obtained at 100 mA and reconstructed with hybrid-type IR, MBIR, and DLR were significantly smaller than that for FBP (p < 0.05). CONCLUSIONS: Findings of our phantom study show that reconstruction method had influence on CADv merits for abdominal CT with not only standard but also reduced dose examinations and that DLR can potentially yield better image quality and CADv measurements than FBP, hybrid-type IR, or MBIR in this setting.
-
INNERVISION 39(9) 39-42 2024年8月
-
Investigative radiology 2023年9月15日Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
-
Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine 2023年9月1日PURPOSE: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients. METHODS: As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar's test. RESULTS: SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05). CONCLUSION: DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.
-
European journal of radiology 166 110969-110969 2023年9月PURPOSE: To compare the capability of CTs obtained with a silver or copper x-ray beam spectral modulation filter (Ag filter and Cu filter) and reconstructed with FBP, hybrid-type IR and deep learning reconstruction (DLR) for radiation dose reduction for lung nodule detection using a chest phantom study. MATERIALS AND METHODS: A chest CT phantom was scanned with a 320-detector row CT with Ag filter at 0.6, 1.6 and 2.5 mGy and Cu filters at 0.6, 1.6, 2.5 and 9.6 mGy, and reconstructed with the aforementioned methods. To compare image quality of all the CT data, SNRs and CNRs for any nodule were calculated for all protocols. To compare nodule detection capability among all protocols, the probability of detection of any nodule was assessed with a 5-point visual scoring system. Then, ROC analyses were performed to compare nodule detection capability of Ag and Cu filters for each radiation dose data with the same method and of the three methods for any radiation dose data and obtained with either filter. RESULTS: At any of the doses, SNR, CNR and area under the curve for the Ag filter were significantly higher or larger than those for the Cu filter (p < 0.05). Moreover, with DLR, those values were significantly higher or larger than all the others for CTs obtained with any of the radiation doses and either filter (p < 0.05). CONCLUSION: The Ag filter and DLR can significantly improve image quality and nodule detection capability compared with the Cu filter and other reconstruction methods at each of radiation doses used.
-
European radiology 2023年8月15日OBJECTIVE: The purpose of this study was thus to compare capabilities for quantitative differentiation of non- and minimally invasive adenocarcinomas from other of pulmonary MRIs with ultra-short TE (UTE) obtained with single- and dual-echo techniques (UTE-MRISingle and UTE-MRIDual) and thin-section CT for stage IA lung cancer patients. METHODS: Ninety pathologically diagnosed stage IA lung cancer patients who underwent thin-section standard-dose CT, UTE-MRISingle, and UTE-MRIDual, surgical treatment and pathological examinations were included in this retrospective study. The largest dimension (Dlong), solid portion (solid Dlong), and consolidation/tumor (C/T) ratio of each nodule were assessed. Two-tailed Student's t-tests were performed to compare all indexes obtained with each method between non- and minimally invasive adenocarcinomas and other lung cancers. Receiver operating characteristic (ROC)-based positive tests were performed to determine all feasible threshold values for distinguishing non- or minimally invasive adenocarcinoma (MIA) from other lung cancers. Sensitivity, specificity, and accuracy were then compared by means of McNemar's test. RESULTS: Each index showed significant differences between the two groups (p < 0.0001). Specificities and accuracies of solid Dlong for UTE-MRIDual2nd echo and CTMediastinal were significantly higher than those of solid Dlong for UTE-MRISingle and UTE-MRIDual1st echo and all C/T ratios except CTMediastinal (p < 0.05). Moreover, the specificities and accuracies of solid Dlong and C/T ratio were significantly higher than those of Dlong for each method (p < 0.05). CONCLUSION: Pulmonary MRI with UTE is considered at least as valuable as thin-section CT for quantitative differentiation of non- and minimally invasive adenocarcinomas from other stage IA lung cancers. CLINICAL RELEVANCE STATEMENT: Pulmonary MRI with UTE's capability for quantitative differentiation of non- and minimally invasive adenocarcinomas from other lung cancers in stage IA lung cancer patients is equal or superior to that of thin-section CT. KEY POINTS: • Correlations were excellent for pathologically examined nodules with the largest dimensions (Dlong) and a solid component (solid Dlong) for all indexes (0.95 ≤ r ≤ 0.99, p < 0.0001). • Pathologically examined Dlong and solid Dlong obtained with all methods showed significant differences between non- and minimally invasive adenocarcinomas and other lung cancers (p < 0.0001). • Solid tumor components are most accurately measured by UTE-MRIDual2nd echo and CTMediastinal, whereas the ground-glass component is imaged by UTE-MRIDual1st echo and CTlung with high accuracy. UTE-MRIDual predicts tumor invasiveness with 100% sensitivity and 87.5% specificity at a C/T threshold of 0.5.
-
Diagnostics (Basel, Switzerland) 13(15) 2023年7月28日An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
-
Japanese journal of radiology 2023年7月27日PURPOSE: Deep learning reconstruction (DLR) has been introduced by major vendors, tested for CT examinations of a variety of organs, and compared with other reconstruction methods. The purpose of this study was to compare the capabilities of DLR for image quality improvement and lung texture evaluation with those of hybrid-type iterative reconstruction (IR) for standard-, reduced- and ultra-low-dose CTs (SDCT, RDCT and ULDCT) obtained with high-definition CT (HDCT) and reconstructed at 0.25-mm, 0.5-mm and 1-mm section thicknesses with 512 × 512 or 1024 × 1024 matrixes for patients with various pulmonary diseases. MATERIALS AND METHODS: Forty age-, gender- and body mass index-matched patients with various pulmonary diseases underwent SDCT (CT dose index volume <CTDIvol>: mean ± standard deviation, 9.0 ± 1.8 mGy), RDCT (CTDIvol: 1.7 ± 0.2 mGy) and ULDCT (CTDIvol: 0.8 ± 0.1 mGy) at a HDCT. All CT data set were then reconstructed with 512 × 512 or 1024 × 1024 matrixes by means of hybrid-type IR and DLR. SNR of lung parenchyma and probabilities of all lung textures were assessed for each CT data set. SNR and detection performance of each lung texture reconstructed with DLR and hybrid-type IR were then compared by means of paired t tests and ROC analyses for all CT data at each section thickness. RESULTS: Data for each radiation dose showed DLR attained significantly higher SNR than hybrid-type IR for each of the CT data (p < 0.0001). On assessments of all findings except consolidation and nodules or masses, areas under the curve (AUCs) for ULDCT with hybrid-type IR for each section thickness (0.91 ≤ AUC ≤ 0.97) were significantly smaller than those with DLR (0.97 ≤ AUC ≤ 1, p < 0.05) and the standard protocol (0.98 ≤ AUC ≤ 1, p < 0.05). CONCLUSION: DLR is potentially more effective for image quality improvement and lung texture evaluation than hybrid-type IR on all radiation dose CTs obtained at HDCT and reconstructed with each section thickness with both matrixes for patients with a variety of pulmonary diseases.
-
European journal of radiology 162 110764-110764 2023年5月PURPOSE: The purpose of this study was to determine the influenceof reverse encoding distortion correction (RDC) on ADC measurement and its efficacy for improving image quality and diagnostic performance for differentiating malignant from benign prostatic areas on prostatic DWI. METHODS: Forty suspected prostatic cancer patients underwent DWI with or without RDC (i.e. RDC DWI or DWI) using a 3 T MR system as well as pathological examinations. The pathological examination results indicated 86 areas were malignant while 86 out of 394 areas were computationally selected as benign. SNR for benign areas and muscle and ADCs for malignant and benign areas were determined by ROI measurements on each DWI. Moreover, overall image quality was assessed with a 5-point visual scoring system on each DWI. Paired t-test or Wilcoxon's signed rank test was performed to compare SNR and overall image quality for DWIs. ROC analysis was then used to compare the diagnostic performance, and sensitivity (SE), specificity (SP) and accuracy (AC) of ADC were compared between two DWI by means of McNemar's test. RESULTS: SNR and overall image quality of RDC DWI showed significant improvements when compared with those of DWI (p < 0.05). Areas under the curve (AUC), SP and AC of DWI RDC DWI (AUC: 0.85, SP: 72.1%, AC: 79.1%) were significantly better than those of DWI (AUC: 0.79, p = 0.008; SP: 64%, p = 0.02; AC: 74.4%, p = 0.008). CONCLUSION: RDC technique has the potential to improve image quality and ability to differentiate malignant from benign prostatic areas on DWIs of suspected prostatic cancer patients.
-
Journal of Magnetic Resonance Imaging 2023年3月27日
-
Cancers 15(3) 950-950 2023年2月2日Since the Radiology Diagnostic Oncology Group (RDOG) report had been published in 1991, magnetic resonance (MR) imaging had limited clinical availability for thoracic malignancy, as well as pulmonary diseases. However, technical advancements in MR systems, such as sequence and reconstruction methods, and adjustments in the clinical protocol for gadolinium contrast media administration have provided fruitful results and validated the utility of MR imaging (MRI) for lung cancer evaluations. These techniques include: (1) contrast-enhanced MR angiography for T-factor evaluation, (2) short-time inversion recovery turbo spin-echo sequences as well as diffusion-weighted imaging (DWI) for N-factor assessment, and (3) whole-body MRI with and without DWI and with positron emission tomography fused with MRI for M-factor or TNM stage evaluation as well as for postoperative recurrence assessment of lung cancer or other thoracic tumors using 1.5 tesla (T) or 3T systems. According to these fruitful results, the Fleischner Society has changed its position to approve of MRI for lung or thoracic diseases. The purpose of this review is to analyze recent advances in lung MRI with a particular focus on lung cancer evaluation, clinical staging, and recurrence assessment evaluation.
-
Journal of magnetic resonance imaging : JMRI 2022年6月26日BACKGROUND: Computed diffusion-weighted imaging (cDWI) is a mathematical computation technique that generates DWIs for any b-value by using actual DWI (aDWI) data with at least two different b-values and may improve differentiation of metastatic from nonmetastatic lymph nodes. PURPOSE: To determine the appropriate b-value for cDWI to achieve a better diagnostic capability for lymph node staging (N-staging) in non-small cell lung cancer (NSCLC) patients compared to aDWI, short inversion time (TI) inversion recovery (STIR) imaging, or positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-d-glucose combined with computed tomography (FDG-PET/CT). STUDY TYPE: Prospective. SUBJECTS: A total of 245 (127 males and 118 females; mean age 72 years) consecutive histopathologically confirmed NSCLC patients. FIELD STRENGTH/SEQUENCE: A 3 T, half-Fourier single-shot turbo spin-echo sequence, electrocardiogram (ECG)-triggered STIR fast advanced spin-echo (FASE) sequence with black blood and STIR acquisition and DWI obtained by FASE with b-values of 0 and 1000 sec/mm2 . ASSESSMENT: From aDWIs with b-values of 0 and 1000 (aDWI1000 ) sec/mm2 , cDWI using 400 (cDWI400 ), 600 (cDWI600 ), 800 (cDWI800 ), and 2000 (cDWI2000 ) sec/mm2 were generated. Then, 114 metastatic and 114 nonmetastatic nodes (mediastinal and hilar lymph nodes) were selected and evaluated with a contrast ratio (CR) for each cDWI and aDWI, apparent diffusion coefficient (ADC), lymph node-to-muscle ratio (LMR) on STIR, and maximum standard uptake value (SUVmax ). STATISTICAL TESTS: Receiver operating characteristic curve (ROC) analysis, Youden index, and McNemar's test. RESULTS: Area under the curve (AUC) of CR600 was significantly larger than the CR400 , CR800 , CR2000 , aCR1000 , and SUVmax . Comparison of N-staging accuracy showed that CR600 was significantly higher than CR400 , CR2000 , ADC, aCR1000 , and SUVmax , although there were no significant differences with CR800 (P = 0.99) and LMR (P = 0.99). DATA CONCLUSION: cDWI with b-value at 600 sec/mm2 may have potential to improve N-staging accuracy as compared with aDWI, STIR, and PET/CT. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
-
American Journal of Roentgenology 218(5) 899-908 2022年5月
-
Radiology 211254-211254 2021年11月30日Background Pulmonary MRI with ultrashort echo time (UTE) has been compared with chest CT for nodule detection and classification. However, direct comparisons of these methods' capabilities for Lung CT Screening Reporting and Data System (Lung-RADS) evaluation remain lacking. Purpose To compare the capabilities of pulmonary MRI with UTE with those of standard- or low-dose thin-section CT for Lung-RADS classification. Materials and Methods In this prospective study, standard- and low-dose chest CT (270 mA and 60 mA, respectively) and MRI with UTE were used to examine consecutive participants enrolled between January 2017 and December 2020 who met American College of Radiology Appropriateness Criteria for lung cancer screening with low-dose CT. Probability of nodule presence was assessed for all methods with a five-point visual scoring system by two board-certified radiologists. All nodules were then evaluated in terms of their Lung-RADS classification using each method. To compare nodule detection capability of the three methods, consensus for performances was rated by using jackknife free-response receiver operating characteristic analysis, and sensitivity was compared by means of the McNemar test. In addition, weighted κ statistics were used to determine the agreement between Lung-RADS classification obtained with each method and the reference standard generated from standard-dose CT evaluated by two radiologists who were not included in the image analysis session. Results A total of 205 participants (mean age: 64 years ± 7 [standard deviation], 106 men) with 1073 nodules were enrolled. Figure of merit (FOM) (P < .001) had significant differences among three modalities (standard-dose CT: FOM = 0.91, low-dose CT: FOM = 0.89, pulmonary MRI with UTE: FOM = 0.94), with no evidence of false-positive findings in participants with all modalities (P > .05). Agreements for Lung-RADS classification between all modalities and the reference standard were almost perfect (standard-dose CT: κ = 0.82, P < .001; low-dose CT: κ = 0.82, P < .001; pulmonary MRI with UTE: κ = 0.82, P < .001). Conclusion In a lung cancer screening population, ultrashort echo time pulmonary MRI was comparable to standard- or low-dose CT for Lung CT Screening Reporting and Data System classification. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.
-
Acta radiologica (Stockholm, Sweden : 1987) 2841851211044973-2841851211044973 2021年10月12日 査読有りBACKGROUND: The need for quantitative assessment of interstitial lung involvement on thin-section computed tomography (CT) has arisen in interstitial lung diseases including connective tissue disease (CTD). PURPOSE: To evaluate the capability of machine learning (ML)-based CT texture analysis for disease severity and treatment response assessments in comparison with qualitatively assessed thin-section CT for patients with CTD. MATERIAL AND METHODS: A total of 149 patients with CTD-related ILD (CTD-ILD) underwent initial and follow-up CT scans (total 364 paired serial CT examinations), pulmonary function tests, and serum KL-6 level tests. Based on all follow-up examination results, all paired serial CT examinations were assessed as "Stable" (n = 188), "Worse" (n = 98) and "Improved" (n = 78). Next, quantitative index changes were determined by software, and qualitative disease severity scores were assessed by consensus of two radiologists. To evaluate differences in each quantitative index as well as in disease severity score between paired serial CT examinations, Tukey's honestly significant difference (HSD) test was performed among the three statuses. Stepwise regression analyses were performed to determine changes in each pulmonary functional parameter and all quantitative indexes between paired serial CT scans. RESULTS: Δ% normal lung, Δ% consolidation, Δ% ground glass opacity, Δ% reticulation, and Δdisease severity score showed significant differences among the three statuses (P < 0.05). All differences in pulmonary functional parameters were significantly affected by Δ% normal lung, Δ% reticulation, and Δ% honeycomb (0.16 ≤r2 ≤0.42; P < 0.05). CONCLUSION: ML-based CT texture analysis has better potential than qualitatively assessed thin-section CT for disease severity assessment and treatment response evaluation for CTD-ILD.
-
Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine 2021年4月29日Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
-
Journal of Magnetic Resonance Imaging 53(4) 1042-1051 2021年4月1日
-
European Journal of Radiology 134 2021年1月1日
-
Japanese Journal of Lung Cancer 60 895-897 2020年11月12日
-
American Journal of Roentgenology 215(5) 1191-1198 2020年11月1日
-
Radiology 191740-191740 2020年5月26日 査読有りBackground Deep learning may help to improve computer-aided detection of volume (CADv) measurement of pulmonary nodules at chest CT. Purpose To determine the efficacy of a deep learning method for improving CADv for measuring the solid and ground-glass opacity (GGO) volumes of a nodule, doubling time (DT), and the change in volume at chest CT. Materials and Methods From January 2014 to December 2016, patients with pulmonary nodules at CT were retrospectively reviewed. CADv without and with a convolutional neural network (CNN) automatically determined total nodule volume change per day and DT. Area under the curves (AUCs) on a per-nodule basis and diagnostic accuracy on a per-patient basis were compared among all indexes from CADv with and without CNN for differentiating benign from malignant nodules. Results The CNN training set was 294 nodules in 217 patients, the validation set was 41 nodules in 32 validation patients, and the test set was 290 nodules in 188 patients. A total of 170 patients had 290 nodules (mean size ± standard deviation, 11 mm ± 5; range, 4-29 mm) diagnosed as 132 malignant nodules and 158 benign nodules. There were 132 solid nodules (46%), 106 part-solid nodules (36%), and 52 ground-glass nodules (18%). The test set results showed that the diagnostic performance of the CNN with CADv for total nodule volume change per day was larger than DT of CADv with CNN (AUC, 0.94 [95% confidence interval {CI}: 0.90, 0.96] vs 0.67 [95% CI: 0.60, 0.74]; P < .001) and CADv without CNN (total nodule volume change per day: AUC, 0.69 [95% CI: 0.62, 0.75]; P < .001; DT: AUC, 0.58 [95% CI: 0.51, 0.65]; P < .001). The accuracy of total nodule volume change per day of CADv with CNN was significantly higher than that of CADv without CNN (P < .001) and DT of both methods (P < .001). Conclusion Convolutional neural network is useful for improving accuracy of computer-aided detection of volume measurement and nodule differentiation capability at CT for patients with pulmonary nodules. © RSNA, 2020 Online supplemental material is available for this article.
-
Annals of Thoracic Surgery 108(5) 1543-1550 2019年11月1日
-
European journal of radiology 115 22-30 2019年6月PURPOSE: To prospectively compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion MR imaging with ultra-short TE and area-detector CT (ADCT), analyzed with the same mathematical methods, and that of FDG-PET/CT for diagnosis and management of solitary pulmonary nodules (SPNs). METHODS AND MATERIALS: Our institutional review board approved this study and written informed consent was obtained from all subjects. A total 57 consecutive patients with 71 nodules prospectively underwent dynamic CE-perfusion ADCT and MR imaging with ultra-short TE, FDG-PET/CT, as well as microbacterial and/or pathological examinations. The nodules were classified into malignant nodules (n = 45) and benign nodules (n = 26). Pulmonary arterial, systemic arterial and total perfusions were determined by means of dual-input maximum slope models on ADCT and MR imaging and maximum values of standard uptake values (SUVmax) on PET/CT. Receiver operating characteristic (ROC) analysis was performed for each index, and sensitivity, specificity and accuracy were compared by McNemar's test. RESULTS: Areas under the curve (Azs) of total perfusion on ADCT (Az = 0.89) and MR imaging (Az = 0.88) were significantly larger than those of systemic arterial perfusion and MR imaging (p<0.05). Accuracy of total perfusion on ADCT (87.3% [62/71]) and MR imaging (87.3% [62/71]) was significantly higher than that of systemic arterial perfusion for both methods (77.5% [55/71] p = 0.02) and SUVmax (78.9% [56/71], p = 0.03). CONCLUSION: Dynamic CE-perfusion MR imaging with ultra-short TE and ADCT and have similar potential capabilities, and are superior to FDG-PET/CT in this setting.
-
American Journal of Roentgenology 210(2) W45-W53 2018年2月1日 査読有り
-
Japanese Journal of Lung Cancer 58(2) 73-76 2018年 査読有り
-
Japanese Journal of Clinical Oncology 48(1) 89-93 2018年1月1日 査読有り
-
ANNALS OF THORACIC SURGERY 102(5) 1702-1710 2016年11月 査読有り
-
JOURNAL OF MAGNETIC RESONANCE IMAGING 43(2) 512-532 2016年2月 査読有り
-
European Journal of Radiology Open 3 67-73 2016年 査読有り
-
EUROPEAN JOURNAL OF RADIOLOGY 84(11) 2321-2331 2015年11月 査読有り
-
JOURNAL OF MAGNETIC RESONANCE IMAGING 42(2) 340-353 2015年8月 査読有り
-
Br J Radiol 87(1038) 20130307 2014年6月 査読有り
-
European journal of radiology 82(8) 1359-1365 2013年8月 査読有り
-
BRITISH JOURNAL OF RADIOLOGY 85(1020) 1525-1532 2012年12月 査読有り
MISC
311共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2025年4月 - 2028年3月