研究者業績
基本情報
経歴
13-
2024年4月 - 現在
-
2023年9月 - 2024年3月
-
2021年4月 - 2023年8月
-
2020年4月 - 2021年3月
-
2019年4月 - 2020年3月
学歴
2-
2010年4月 - 2014年3月
-
1998年4月 - 2004年3月
委員歴
2-
2021年4月 - 現在
-
2022年4月
受賞
1論文
11-
Antioxidants (Basel, Switzerland) 13(6) 2024年5月23日Oxidative stress (OS) affects men's health and impairs spermatogenesis. Micronutrient antioxidants are available for male infertility as complemental support; however, their efficacy remains debatable. This study aimed to investigate whether antioxidants can help to reduce sperm OS and improve semen analysis and quality. We included 171 male partners of couples planning to undergo assisted reproductive technology (ART). Male partners, aged 29-41 years, of couples intending to conceive were self-selected to take daily antioxidants (n = 84) containing folic acid and zinc, or not to take antioxidants (n = 52) for 6 months. We analyzed the alterations in serum oxidant levels, sperm parameters, OS, and deoxyribonucleic acid fragmentation after 3 and 6 months. Additionally, implantation, clinical pregnancy, and miscarriage rates after vitrified-warmed embryo transfer were compared between those taking antioxidants and those not taking them after 6 months. In men with high static oxidation-reduction potential (sORP), we observed a significant improvement in sperm concentration and sORP. The high-quality blastocyst rate tended to increase, and implantation and clinical pregnancy rates also significantly increased after 6 months of intervention. The micronutrient antioxidants could improve sperm function by reducing OS and improving ART outcomes. Therefore, micronutrient antioxidants may be a viable treatment option for male infertility.
-
Nutrients 15(17) 2023年8月25日Homocysteine is an amino acid naturally produced in the body and metabolized via the methionine cycle. High homocysteine levels can increase the risk of infertility and pregnancy complications, such as preeclampsia, preterm delivery, miscarriage, and low birth weight. Preconceptional homocysteine levels may be reduced by taking folic acid supplements to reduce the risk of such complications. This cross-sectional, hospital-based study was conducted to examine the role of homocysteine in 1060 infertile women with a history of IVF/intracytoplasmic sperm injection (ICSI) failure. We analyzed whether folic acid intervention altered homocysteine levels and influenced reproductive outcome. We found that a higher homocysteine level was statistically associated with a lower fertilization rate in patients with a history of IVF/ICSI failure. There was an inverse relationship between homocysteine levels and serum 25(OH)VD, and a trend towards lower anti mullerian hormone in the group with higher homocysteine levels. This is the first interventional study to identify that folic acid supplementation improved pregnancy outcomes following freeze embryo transfer (FET) in women with a history of FET failure by monitoring the reduction in homocysteine levels. Therefore, folic acid supplementation and homocysteine level monitoring may constitute a novel intervention for improving IVF/ICSI pregnancy outcomes.
-
Reproductive biology and endocrinology : RB&E 20(1) 130-130 2022年8月30日OBJECTIVE: To generate an effective embryo prediction model and identify a non-invasive evaluation method by analyzing microRNAs (miRNAs) in embryo culture medium. DESIGN: Analysis of microRNA profiles from spent culture medium of blastocysts with good morphology that did or did not result in pregnancy. SETTING: Clinical and experimental research. PATIENTS: Sixty patients who underwent thawed embryo transfer of blastocysts after intracytoplasmic sperm injection. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): The association of miRNA abundance levels secreted by blastocysts in culture medium and implantation success. RESULTS: Our RNA sequencing analysis found a total of 53 differentially expressed miRNAs in the culture media of pregnancy and non-pregnancy groups. Twenty-one miRNAs were analyzed for their potential to predict implantation success. Eight miRNAs (hsa-miR-191-5p, hsa-miR-320a, hsa-miR-92a-3p, hsa-miR-509-3p, hsa-miR-378a-3p, hsa-miR-28-3p, hsa-miR-512-5p, and hsa-miR-181a-5p) were further extracted from the results of a logistic regression analysis of qPCR Ct values. A prediction model for high-quality blastocysts was generated using the eight miRNAs, with an average accuracy of 0.82 by 5-fold cross validation. CONCLUSION: We isolated blastocyst miRNAs that may predict implantation success and created a model to predict viable embryos. Increasing the number of investigated cases and further studying the effect of each miRNA on embryonic development is needed to refine the miRNA-based predictive model.
-
Stem cell reports 12(6) 1366-1379 2019年6月11日Zygotic genome activation (ZGA) begins after fertilization and is essential for establishing pluripotency and genome stability. However, it is unclear how ZGA genes prevent mitotic errors. Here we show that knockout of the ZGA gene Zscan5b, which encodes a SCAN domain with C2H2 zinc fingers, causes a high incidence of chromosomal abnormalities in embryonic stem cells (ESCs), and leads to the development of early-stage cancers. After irradiation, Zscan5b-deficient ESCs displayed significantly increased levels of γ-H2AX despite increased expression of the DNA repair genes Rad51l3 and Bard. Re-expression of Zscan5b reduced γ-H2AX content, implying a role for Zscan5b in DNA damage repair processes. A co-immunoprecipitation analysis showed that Zscan5b bound to the linker histone H1, suggesting that Zscan5b may protect chromosomal architecture. Our report demonstrates that the ZGA gene Zscan5b is involved in genomic integrity and acts to promote DNA damage repair and regulate chromatin dynamics during mitosis.
-
Frontiers in endocrinology 10 811-811 2019年Reproductive capacity in women starts to decline beyond their mid-30s and pregnancies in older women result in higher rates of miscarriage with aneuploidy. Age-related decline in fertility is strongly attributed to ovarian aging, diminished ovarian reserves, and decreased developmental competence of oocytes. In this review, we discuss the underlying mechanisms of age-related decline in oocyte quality, focusing on oxidative stress (OS) in oocytes. The primary cause is the accumulation of spontaneous damage to the mitochondria arising from increased reactive oxygen species (ROS) in oocytes, generated by the mitochondria themselves during daily biological metabolism. Mitochondrial dysfunction reduces ATP synthesis and influences the meiotic spindle assembly responsible for chromosomal segregation. Moreover, reproductively aged oocytes produce a decline in the fidelity of the protective mechanisms against ROS, namely the ROS-scavenging metabolism, repair of ROS-damaged DNA, and the proteasome and autophagy system for ROS-damaged proteins. Accordingly, increased ROS and increased vulnerability of oocytes to ROS lead to spindle instability, chromosomal abnormalities, telomere shortening, and reduced developmental competence of aged oocytes.
MISC
15共同研究・競争的資金等の研究課題
2-
日本学術振興会 科学研究費助成事業 2011年 - 2013年
-
日本学術振興会 科学研究費助成事業 2010年 - 2012年