研究者業績

Sopak Supakul

ソパック スパグン  (Supakul Sopak)

基本情報

所属
藤田医科大学 神経再生・創薬研究部門 助教
学位
博士(医学)(2024年3月 慶應義塾大学)
学士(医学)(2020年3月 東京医科歯科大学)

J-GLOBAL ID
202401012085024926
researchmap会員ID
R000069912

学歴

 2

論文

 9
  • Sopak Supakul, Chisato Oyama, Yuki Hatakeyama, Sumihiro Maeda, Hideyuki Okano
    Regenerative Therapy 25 250-263 2024年3月  
  • Sopak Supakul, Rei Murakami, Chisato Oyama, Tomoko Shindo, Yuki Hatakeyama, Maika Itsuno, Hiroko Bannai, Shinsuke Shibata, Sumihiro Maeda, Hideyuki Okano
    Inflammation and Regeneration 44(1) 2024年2月28日  
    Abstract Background The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes. Methods To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APPV717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models. Results The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes. Conclusions Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APPV717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.
  • Sopak Supakul, Yuki Hatakeyama, Nicolas Leventoux, Maika Itsuno, Naoko Numata, Hayato Hiramine, Satoru Morimoto, Atsushi Iwata, Sumihiro Maeda, Hideyuki Okano
    Aging Brain 4 100101-100101 2023年  
  • Sopak Supakul, Nicolas Leventoux, Hajime Tabuchi, Masaru Mimura, Daisuke Ito, Sumihiro Maeda, Hideyuki Okano
    Stem Cell Research 62 102802-102802 2022年7月  
  • Sopak Supakul, Yurika Nishikawa, Masanori Teramura, Tetsuro Takase
    Medicina 58(6) 815-815 2022年6月16日  
    Empagliflozin is a sodium-glucose cotransporter-2 inhibitor widely used in the treatment of diabetes mellitus and heart failure. Our case study involved a 68-year-old patient who was admitted to the hospital because of a cerebral infarction. The patient was simultaneously diagnosed with diabetes mellitus and heart failure, for which empagliflozin was initiated. However, food and fluid intake were reduced due to poor appetite. In addition to the side effects of empagliflozin, the patient developed severe dehydration and cardiac arrest. Careful assessment of dehydration and preventive water intake is recommended in elderly patients and those with neurological deficits, especially when receiving empagliflozin.
  • Sopak Supakul, Hideyuki Okano, Sumihiro Maeda
    Frontiers in Aging Neuroscience 13 2021年11月4日  
    Alzheimer’s disease (AD) is an aging-dependent neurodegenerative disease that impairs cognitive function. Although the main pathologies of AD are the aggregation of amyloid-beta (Aβ) and phosphorylated Tau protein, the mechanisms that lead to these pathologies and their effects are believed to be heterogeneous among patients. Many epidemiological studies have suggested that sex is involved in disease prevalence and progression. The reduction of sex hormones contributes to the pathogenesis of AD, especially in females, suggesting that the supplementation of sex hormones could be a therapeutic intervention for AD. However, interventional studies have revealed that hormone therapy is beneficial under limited conditions in certain populations with specific administration methods. Thus, this suggests the importance of identifying crucial factors that determine hormonal effects in patients with AD. Based on these factors, it is necessary to decide which patients will receive the intervention before starting it. However, the long observational period and many uncontrollable environmental factors in clinical trials made it difficult to identify such factors, except for the APOE ε4 allele. Induced pluripotent stem cells (iPSCs) derived from patients can differentiate into neurons and recapitulate some aspects of AD pathogenesis. This in vitro model allows us to control non-cell autonomous factors, including the amount of Aβ aggregates and sex hormones. Hence, iPSCs provide opportunities to investigate sex-dependent pathogenesis and predict a suitable population for clinical trials of hormone treatment.
  • Sopak Supakul, Floris Chabrun, Steve Genebrier, Maximilien N’Guyen, Guillaume Valarche, Arthur Derieppe, Adeline Villoteau, Valentin Lacombe, Geoffrey Urbanski
    Journal of Clinical Medicine 9(8) 2335-2335 2020年7月22日  
    Sole measurement of plasma vitamin B12 is no longer enough to identify vitamin B12 (B12) deficiency. When plasma vitamin B12 is in the low-normal range, especially between 201 and 350 ng/L, B12 deficiency should be assessed by measurements of plasma homocysteine and/or plasma methylmalonic acid (MMA). However, these biomarkers also accumulate during renal impairment, leading to a decreased specificity for B12 deficiency. In such cases, urinary methylmalonic acid/creatinine ratio (uMMA/C) could be of interest, due to the stable urinary excretion of MMA. The objectives were to evaluate the influence of renal impairment on uMMA/C compared to plasma homocysteine and plasma methylmalonic acid, and to determine the diagnostic performances of uMMA/C in the diagnosis of B12 deficiency. We prospectively studied 127 patients with a plasma B12 between 201 and 350 ng/L. We noticed that uMMA/C was not dependent on renal function (p = 0.34), contrary to plasma homocysteine and plasma methylmalonic acid. uMMA/C showed a perspective diagnostic performance (AUC 0.71 [95% CI: 0.62–0.80]) and the threshold of 1.45 umol/mmol presented a high degree of specificity (87.9% [95% CI: 72.0–98.9]). In conclusion, uMMA/C is a promising biomarker to assess vitamin B12 status in doubtful cases, notably during renal impairment.
  • Sopak Supakul, Hye Yin Park, Bao Ngoc Nguyen, Kim Bao Giang
    Journal of Global Health Science 1(2) 2019年12月  
  • Sopak Supakul, Kenta Yao, Hiroki Ochi, Tomohito Shimada, Kyoko Hashimoto, Satoko Sunamura, Yo Mabuchi, Miwa Tanaka, Chihiro Akazawa, Takuro Nakamura, Atsushi Okawa, Shu Takeda, Shingo Sato
    International Journal of Molecular Sciences 20(5) 1079-1079 2019年3月2日  
    Pericytes are mesenchymal cells that surround the endothelial cells of small vessels in various organs. These cells express several markers, such as NG2, CD146, and PDGFRβ, and play an important role in the stabilization and maturation of blood vessels. It was also recently revealed that like mesenchymal stem cells (MSCs), pericytes possess multilineage differentiation capacity, especially myogenic, adipogenic, and fibrogenic differentiation capacities. Although some previous studies have reported that pericytes also have osteogenic potential, the osteogenesis of pericytes can still be further elucidated. In the present study, we established novel methods for isolating and culturing primary murine pericytes. An immortalized pericyte line was also established. Multilineage induction of the pericyte line induced osteogenesis, adipogenesis, and chondrogenesis of the cells in vitro. In addition, pericytes that were injected into the fracture site of a bone fracture mouse model contributed to callus formation. Furthermore, in vivo pericyte-lineage-tracing studies demonstrated that endogenous pericytes also differentiate into osteoblasts and osteocytes and contribute to bone fracture healing as a cellular source of osteogenic cells. Pericytes can be a promising therapeutic candidate for treating bone fractures with a delayed union or nonunion as well as bone diseases causing bone defects.

共同研究・競争的資金等の研究課題

 2