Curriculum Vitaes
Profile Information
- Affiliation
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- Degree
- Doctor of Science(Mar, 1989, The University of Tokyo)
- Contact information
- yoshikawa.makoto
jaxa.jp
- J-GLOBAL ID
- 200901037361657011
- researchmap Member ID
- 1000304540
Research Interests
6Research Areas
2Research History
5-
Apr, 1998 - Sep, 2003
-
Apr, 1991 - Mar, 1998
-
Dec, 1996 - Dec, 1997
-
Apr, 1989 - Mar, 1991
Education
2-
Apr, 1984 - Mar, 1989
-
Apr, 1980 - Mar, 1984
Committee Memberships
9-
Oct, 2020 - Present
-
Apr, 1994 - Present
-
Jan, 2013 - Mar, 2015
-
Jan, 2011 - Dec, 2012
-
2009 - 2011
Awards
2-
Nov, 2019
-
Dec, 2018
Papers
288-
Meteoritics & Planetary Science, Nov 25, 2024Abstract Nucleosynthetic isotope variations are powerful tracers to determine genetic relationships between meteorites and planetary bodies. They can help to link material collected by space missions to known meteorite groups. The Hayabusa 2 mission returned samples from the Cb‐type asteroid (162173) Ryugu. The mineralogical, chemical, and isotopic characteristics of these samples show strong similarities to carbonaceous chondrites and in particular CI chondrites. The nucleosynthetic isotope compositions of Ryugu overlap with CI chondrites for several elements (e.g., Cr, Ti, Fe, and Zn). In contrast to these isotopes, which are of predominately supernovae origin, s‐process variations in Mo isotope data are similar to those of carbonaceous chondrites, but even more s‐process depleted. To further constrain the origin of this depletion and test whether this signature is also present for other s‐process elements, we report Zr isotope compositions for three bulk Ryugu samples (A0106, A0106‐A0107, C0108) collected from the Hayabusa 2 mission. The data are complemented with that of terrestrial rock reference materials, eucrites, and carbonaceous chondrites. The Ryugu samples are characterized by distinct 96Zr enrichment relative to Earth, indicative of a s‐process depletion. Such depletion is also observed for carbonaceous chondrites and eucrites, in line with previous Zr isotope work, but it is more extreme in Ryugu, as observed for Mo isotopes. Since s‐process Zr and Mo are coupled in mainstream SiC grains, these distinct s‐process variations might be due to SiC grain depletion in the analyzed materials, potentially caused by incomplete sample digestion, because the Ryugu samples were dissolved on a hotplate only to avoid high blank levels for other elements (e.g., Cr). However, local depletion of SiC grains cannot be excluded. An alternative, equally possible scenario is that aqueous alteration redistributed anomalous, s‐process‐depleted, Zr on a local scale, for example, into Ca‐phosphates or phyllosilicates.
-
Science Advances, 10(39), Sep 27, 2024The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk’s lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites.
-
Nature Astronomy, Sep 25, 2024
-
Nature Communications, 15 7488, Aug 29, 2024 Peer-reviewedAbstract Primordial carbon delivered to the early earth by asteroids and meteorites provided a diverse source of extraterrestrial organics from pre-existing simple organic compounds, complex solar-irradiated macromolecules, and macromolecules from extended hydrothermal processing. Surface regolith collected by the Hayabusa2 spacecraft from the carbon-rich asteroid 162173 Ryugu present a unique opportunity to untangle the sources and processing history of carbonaceous matter. Here we show carbonaceous grains in Ryugu can be classified into three main populations defined by spectral shape: Highly aromatic (HA), Alkyl-Aromatic (AA), and IOM-like (IL). These carbon populations may be related to primordial chemistry, since C and N isotopic compositions vary between the three groups. Diffuse carbon is occasionally dominated by molecular carbonate preferentially associated with coarse-grained phyllosilicate minerals. Compared to related carbonaceous meteorites, the greater diversity of organic functional chemistry in Ryugu indicate the pristine condition of these asteroid samples.
-
Geochimica et Cosmochimica Acta, 379 172-183, Aug, 2024
Misc.
499-
宇宙航空研究開発機構研究開発報告 JAXA-RR-, (15-006), 2016
-
JAXA research and development report, 14(14-009) 172-183, Mar, 2015In this paper, we propose methods to estimate positions of `HAYABUSA' during the period of the first touchdown on Itokawa in order to visualize the trajectories of `HAYABUSA'. In this period, there are no reliable ephemeris data of `HAYABUSA'. We used a variety of telemetry data and a shape model of Itokawa to estimate the trajectories. The period is divided into several sub-periods according to the availability of the data. In each sub-period, we propose suitable methods to estimate the positions. The methods are based on the policy that the trajectory should be smooth and continuous in each sub-period.
-
Proceedings of the IEICE General Conference, 2015(2) 11-11, Feb 24, 2015
-
Aeronautical and Space Sciences Japan, 63(10) 333-341, 2015
-
Planetary People - The Japanese Society for Planetary Sciences, 24(1) 54-57, 2015
-
Proceedings of the ISAS Lunar and Planetary Symposium, 46 4p, Aug 5, 2014
-
(13) 320-334, Mar 31, 20145th Space Debris Workshop (January 22-23, 2013, Chofu Aerospace Center, Japan Aerospace Exploration Agency (JAXA)), Chofu, Tokyo, JapanI present the method and the examples of light-curve observations of space debris, using TDI (Time Delay Integration) technique. TDI mode is a readout technique of shifting the charge on the CCD while the shutter is open. It is usually applied to the moving objects with the expected motion, so that they appear as point sources. I tried to apply the TDI method to non-moving objects to derive their short-period light-curves. The advantage of the method and the result of the test observations will be presented here.Physical characteristics: Original contains color illustrations
-
JAXA research and development report, 13(13-010) 7-15, Mar, 2014We have developed methods to visualize trajectories and attitudes of "Hayabusa" spacecraft probing around the asteroid Itokawa. We visualized trajectories and attitudes of "Hayabusa"using public data of those parameters. Then, around the touchdown phase, we corrected the positions of "Hayabusa" using the public data and engineering data, until we succeeded to enhance the accuracy of the trajectories in the visual of the rendezvous of"Hayabusa"and Itokawa.
-
Planetary People - The Japanese Society for Planetary Sciences, 23(4) 337-346, 2014
-
Transactions of JSASS Space Technology Japan, 12(29) Tk_29-Tk_33, 2014 Peer-reviewed
-
Abstracts Fall Meeting of the Japanese Society for Planetary Sciences, 2013 "O10-06", Nov 20, 2013
-
日本惑星科学会秋期講演会予稿集, 2013 "P2-07", Nov 20, 2013
Books and Other Publications
19Presentations
47-
The 56th Lunar and Planetary Science Conference, Mar 13, 2025
-
PERC International symposium on Dust & Parent bodies (IDP2025), Feb 27, 2025
Teaching Experience
8-
Apr, 2019 - Present太陽と太陽系の科学 (放送大学)
-
Apr, 2011 - Present位置天文学・天体力学 (東京大学)
-
Apr, 2007 - Present宇宙科学 (玉川大学)
-
Apr, 2006 - PresentSpace System Engineering 3 (The Graduate University for Advanced Studies)
-
2006 - Present宇宙工学概論 (総合研究大学院大学)
Professional Memberships
3Research Projects
16-
科学研究費助成事業, 日本学術振興会, Apr, 2024 - Mar, 2027
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2023 - Mar, 2026
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Japan Society for the Promotion of Science, Apr, 2018 - Mar, 2021
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science, Apr, 2016 - Mar, 2019
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2003 - 2006