研究者業績
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 特任助教
- 学位
- Ph.D.(2017年6月 University of California, San Diego)
- 研究者番号
- 40867032
- ORCID ID
https://orcid.org/0000-0003-0041-6447
- J-GLOBAL ID
- 201901016586407138
- researchmap会員ID
- B000373123
研究キーワード
3経歴
2-
2021年4月 - 現在
-
2017年7月 - 2021年3月
学歴
2-
2010年9月 - 2017年6月
-
2005年8月 - 2010年5月
受賞
2-
2013年11月
-
2013年3月
論文
70-
Journal of Cosmology and Astroparticle Physics 2024(12) 036-036 2024年12月1日 査読有りAbstract Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial B-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active suppression of systematic effects are crucial. We investigate the effect of changing the parameters of the scanning strategy on the in-flight calibration effectiveness, the suppression of the systematic effects themselves, and the ability to distinguish systematic effects by null-tests. Next-generation missions such as LiteBIRD, modulated by a Half-Wave Plate (HWP), will be able to observe polarisation using a single detector, eliminating the need to combine several detectors to measure polarisation, as done in many previous experiments and hence avoiding the consequent systematic effects. While the HWP is expected to suppress many systematic effects, some of them will remain. We use an analytical approach to comprehensively address the mitigation of these systematic effects and identify the characteristics of scanning strategies that are the most effective for implementing a variety of calibration strategies in the multi-dimensional space of common spacecraft scan parameters. We verify that LiteBIRD's standard configuration yields good performance on the metrics we studied. We also present Falcons.jl, a fast spacecraft scanning simulator that we developed to investigate this scanning parameter space.
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 82-82 2024年8月23日
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 207-207 2024年8月23日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 124-124 2024年8月16日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 120-120 2024年8月16日
-
Applied Optics 2024年8月8日
-
JOURNAL OF LOW TEMPERATURE PHYSICS 216(1-2) 119-128 2024年7月
-
Journal of Astronomical Telescopes, Instruments, and Systems 10(01) 2024年1月27日
-
Review of Scientific Instruments 94(12) 2023年12月1日
-
Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月19日
-
Ground test results of the electromagnetic interference for the x-ray microcalorimeter onboard XRISMJournal of Astronomical Telescopes, Instruments, and Systems 9(1) 18004 2023年1月1日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 2022年8月31日
-
Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 2022年8月27日
-
Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 2022年8月27日
-
Astrophys.J. 931(2) 101-101 2022年5月27日 査読有り
-
Journal of Cosmology and Astroparticle Physics 2022(4) 2022年4月
-
The Astrophysical Journal 926(1) 54 2022年2月1日<jats:title>Abstract</jats:title> <jats:p>CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, <jats:italic>r</jats:italic>, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for <jats:italic>r</jats:italic> > 0.003 at greater than 5<jats:italic>σ</jats:italic>, or in the absence of a detection, of reaching an upper limit of <jats:italic>r</jats:italic> < 0.001 at 95% CL.</jats:p>
-
Ground test results of the electromagnetic interference for the x-ray microcalorimeter onboard XRISMSPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY 12181 2022年
-
SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE 12180 2022年
-
Research Notes of the American Astronomical Society 2021年4月The Simons Observatory is a Cosmic Microwave Background experiment to observe the microwave sky in six frequency bands from 30 to 290 GHz. The Observatory—at ∼5200 m altitude—comprises three Small Aperture Telescopes and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline....
-
Applied Optics 60(4) 823-837 2021年2月1日
-
Applied Optics 60(4) 864-864 2021年1月26日Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.
-
PROCEEDINGS OF THE 14TH ASIA-PACIFIC PHYSICS CONFERENCE 2319 2021年
-
Ground-based and Airborne Telescopes VIII 2020年12月18日
-
Review of Scientific Instruments 91(12) 124503-124503 2020年12月1日 査読有り
-
The Astrophysical Journal 904(1) 65-65 2020年11月20日 査読有り
-
Journal of Low Temperature Physics 200(5-6) 461-471 2020年9月 査読有り
-
The Astrophysical Journal 893(1) 85-85 2020年4月17日 査読有り
-
Internal Delensing of Cosmic Microwave Background Polarization B-Modes with the POLARBEAR ExperimentPhysical Review Letters 124(13) 2020年4月1日 査読有り
-
Review of Scientific Instruments 90(11) 115115-115115 2019年11月1日 査読有り筆頭著者責任著者
-
The Astrophysical Journal 882(1) 62-62 2019年9月4日 査読有り
-
Journal of Cosmology and Astroparticle Physics 2019(02) 056-056 2019年2月27日 査読有りThe Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio,r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from thePlancksatellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
-
The Astrophysical Journal 870(2) 102-102 2019年1月14日 査読有り
-
Astrophysical Journal 886(1) 38-38 2019年
-
Journal of Low Temperature Physics 193(5-6) 758-770 2018年12月 査読有り
-
Journal of Low Temperature Physics 193(5-6) 851-859 2018年12月 査読有り
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年8月6日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月31日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月9日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月9日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018年7月9日 筆頭著者
-
Ground-based and Airborne Telescopes VII 2018年7月6日
-
Ground-based and Airborne Telescopes VII 2018年7月6日
-
The Astrophysical Journal 848(2) 121-121 2017年10月23日 査読有り
-
ASTROPHYSICAL JOURNAL 848(1) 2017年10月 査読有り
-
Journal of Cosmology and Astroparticle Physics 2017(05) 008-008 2017年5月3日 査読有り
-
Astronomy & Astrophysics 600 A60-A60 2017年4月 査読有りAnalysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of <italic>B</italic>-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the <italic>B</italic>-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable.
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII 9914 2016年8月8日
MISC
39講演・口頭発表等
58-
CMB-Inflate/C2C/IPNS/QUP workshop 2025年1月29日
共同研究・競争的資金等の研究課題
2-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2017年10月 - 2020年3月