研究者業績
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 宇宙航空プロジェクト研究員
- 学位
- 博士 (理学)(2023年3月 東京大学)
- 研究者番号
- 10980948
- ORCID ID
https://orcid.org/0000-0001-9823-1920
- J-GLOBAL ID
- 202001020525555639
- researchmap会員ID
- R000014175
経歴
2-
2023年4月 - 現在
-
2021年4月 - 2023年3月
論文
25-
Applied Optics 64(14) 4050-4050 2025年5月8日 査読有りLiteBIRD is a JAXA-led international project aimed at measuring the cosmic microwave background (CMB) polarization with high sensitivity to detect polarization B modes. This detection would provide evidence of inflation. LiteBIRD will observe the full sky for three years at the L2 Lagrange point of the Earth–Sun system across 34–448 GHz and is expected to launch in the Japanese fiscal year of 2032. The Low-Frequency Telescope (LFT) will observe in the 34–161 GHz range implementing a modified crossed Dragone (MCD) reflective optical design optimized for high optical performance across a wide 18∘×9∘ field of view (FOV). In this paper, we report the LFT optical design details including its optimization and optical performance assessed using optical simulations. The MCD design consists of a paraboloidal primary and a hyperboloidal secondary reflector with polynomial correction terms up to seventh order, achieving Strehl ratios ≥0.97 at 161 GHz across the FOV. The Mueller QU (UQ) cross-polarization response is ≤−26.9dB at 34 GHz. The simulated beam sizes are <78′ at 34 GHz. The simulated sidelobe response for the direct and diffuse triple reflection sidelobes is estimated to be <−57dB and for the focused triple reflection sidelobe <−37dB at 34 GHz. The LFT optical design satisfies all the optical requirements and specifications for the project and is compatible with the LiteBIRD science goals.
-
Journal of Cosmology and Astroparticle Physics 2024(12) 036-036 2024年12月1日 査読有りAbstract Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial B-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active suppression of systematic effects are crucial. We investigate the effect of changing the parameters of the scanning strategy on the in-flight calibration effectiveness, the suppression of the systematic effects themselves, and the ability to distinguish systematic effects by null-tests. Next-generation missions such as LiteBIRD, modulated by a Half-Wave Plate (HWP), will be able to observe polarisation using a single detector, eliminating the need to combine several detectors to measure polarisation, as done in many previous experiments and hence avoiding the consequent systematic effects. While the HWP is expected to suppress many systematic effects, some of them will remain. We use an analytical approach to comprehensively address the mitigation of these systematic effects and identify the characteristics of scanning strategies that are the most effective for implementing a variety of calibration strategies in the multi-dimensional space of common spacecraft scan parameters. We verify that LiteBIRD's standard configuration yields good performance on the metrics we studied. We also present Falcons.jl, a fast spacecraft scanning simulator that we developed to investigate this scanning parameter space.
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 209-209 2024年8月23日
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 82-82 2024年8月23日
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 207-207 2024年8月23日 筆頭著者
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 124-124 2024年8月16日
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 120-120 2024年8月16日
-
Applied Optics 2024年8月8日 査読有り
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 13092 2024年
-
ASTRONOMY & ASTROPHYSICS 676 2023年8月 査読有り
-
Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月19日 査読有り
-
Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月12日 査読有り筆頭著者
-
Journal of Low Temperature Physics 211(5-6) 384-397 2022年12月2日 査読有り
-
Progress of Theoretical and Experimental Physics 2023(4) 2022年11月21日 査読有り
-
Journal of Low Temperature Physics 209(3-4) 396-408 2022年9月5日 査読有り
-
Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 12180 2022年8月27日 筆頭著者
-
Journal of Cosmology and Astroparticle Physics 2022(4) 2022年4月 査読有り
-
Journal of Low Temperature Physics 199(3-4) 1107-1117 2020年5月1日 査読有り
-
Journal of Low Temperature Physics 199(1-2) 339-347 2020年4月 査読有り
-
Proceedings of SPIE - The International Society for Optical Engineering 11443 2020年
-
Proceedings of SPIE - The International Society for Optical Engineering 11443 2020年
-
Proceedings of SPIE - The International Society for Optical Engineering 11453 2020年
-
Proceedings of SPIE - The International Society for Optical Engineering 11453 2020年
-
IEEE Transactions on Terahertz Science and Technology 9(6) 598-605 2019年11月 査読有り筆頭著者
-
Proceedings of SPIE - The International Society for Optical Engineering 10698 2018年
主要なMISC
12主要な講演・口頭発表等
10-
CMB B-mode - NEXT 2025年1月29日 招待有り
-
CMB-CAL 2024 @Bicocca 2024年11月6日 招待有り
-
2022 URSI-Japan Radio Science Meeting 2022年9月2日
-
SPIE Astronomical Telescopes + Instrumentation 2022 2022年7月18日
共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2024年4月 - 2028年3月
-
日本学術振興会 科学研究費助成事業 2023年6月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 特別研究員奨励費 2021年4月 - 2023年3月