Curriculum Vitaes
Profile Information
- Affiliation
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- Degree
- (BLANK)
- J-GLOBAL ID
- 200901058783588460
- researchmap Member ID
- 1000292024
Research Interests
4Research Areas
1Research History
2-
Jun, 2019 - Present
-
Apr, 1999
Education
2-
Apr, 1995 - Mar, 1997
-
Apr, 1991 - Mar, 1995
Committee Memberships
3-
Apr, 2022 - Present
-
Apr, 2019 - Mar, 2025
-
Apr, 2020 - Mar, 2022
Papers
231-
Journal of Geophysical Research: Space Physics, 130(10), Oct, 2025 Peer-reviewedAbstract Using Arase satellite observations, this study provides a comprehensive statistical analysis of ions (H+, He+, O+) and electron contributions to the total ring current pressure during storms with two different drivers. The results demonstrate the effect of different solar wind drivers on the composition, energy distribution, and spatial characteristics of the ring current. Using 32 CIR‐ and 30 Interplanetary Coronal Mass Ejection (ICME)‐driven storms, we characterize the ring current pressure evolution during the prestorm, main, early‐recovery, and late‐recovery storm phases as a function of magnetic local time and L‐shell. In CIR‐driven storms, H+ ions are the dominant (∼70%) contributor to the total ring current pressure during main/early recovery phases and increasing to ∼80% during late recovery. In contrast, the O+ pressure (E = 20–50 keV) response is significantly stronger in ICME‐driven storms contributing ∼40% to the overall pressure during the main/early recovery phases and even dominate (∼53%) in certain MLT sectors. Additionally, ICME‐driven storms tend to have peak pressure at lower L‐shells (L ≈ 3–4), while CIR‐driven storms show pressure peaks at slightly higher L‐shells (L ≈ 4–5). Interestingly, electron pressure also plays a notable role in specific MLT sectors, contributing ∼18% (03–09 MLT) during the main phase of CIR‐driven storms and ∼11% (21–03 MLT) during ICME‐driven storms. The results highlight that the storm time electron pressure plays a crucial role in the ring current buildup. Another noteworthy feature of this study is that Arase's fine‐energy resolution and broad coverage enable a detailed investigation of energy‐dependent ring current dynamics.
-
Journal of Geophysical Research: Space Physics, 130(9), Aug 28, 2025 Peer-reviewedAbstract The interaction between lunar magnetic anomalies and the solar wind plasma creates unique structures known as “lunar mini‐magnetospheres,” which reflect and partially shield the lunar surface from impinging solar wind protons. Using data from the Sub‐KeV Atom Reflecting Analyzer onboard Chandrayaan‐1, we produce new surface maps of energetic neutral atom (ENA) and reflected proton emissions. We show that solar wind proton precipitation can be reduced by up to 80% inside magnetic anomalies and increased by up to 50% on scales larger than 1,000 km around magnetic anomalies. The morphology of these proton precipitation enhancement and depletion regions varies differently as a function of upstream solar wind dynamic pressure for small, isolated anomalies compared to the large South Pole‐Aitken (SPA) magnetic cluster. In contrast to small magnetic anomalies, which are compressed and less effective at shielding the surface from the solar wind at high dynamic pressures, the SPA magnetic cluster creates a large “mini‐magnetosphere” that alters proton precipitation patterns on global‐scales (>1,000 km) inside and around the cluster. We show that this behavior may result from the interaction between protons reflected by the SPA magnetic anomaly cluster and the solar wind.
-
Progress in Earth and Planetary Science, 12(1), Aug 19, 2025 Peer-reviewedAbstract The mass spectrum analyzer (MSA) is one of the instruments onboard MMX and observes the interaction between the Martian moons (Phobos and Deimos) and the solar wind as well as the material transport between Mars and its moons. MSA consists of an ion mass spectrum analyzer and a magnetometer. The objective of the magnetometer, MSA-MG, is to measure the magnetic field at the MMX position to trace the motion of the ions. We defined the requirements for the performance of the MSA-MG and designed the instrument to meet them. It is confirmed that MSA-MG as a unit has the required characteristics by the ground performance test and calibration. One of the essential calibration parameters, artificial bias in the data, must be determined by analyzing the flight data. To improve the accuracy of the determined bias, efforts to remove the magnetic noise from other components onboard MMX are essential.
-
Progress in Earth and Planetary Science, 12(1), Jul 11, 2025 Peer-reviewedAbstract An ion energy mass spectrum analyzer was developed for the Martian Moons eXploration (MMX) mission to measure the three-dimensional velocity distribution function and mass profile of low-energy ions around the Mars-Moon system. The hemispheric field-of-view (FOV) is acquired by a pair of angular scanning deflectors, and the energy/charge and mass/charge are determined for each ion by an electrostatic analyzer and a linear-electric-field (LEF) time-of-flight (TOF) analyzer, respectively, with an enhanced mass resolution of $$m/\Delta m\sim 100$$ . The ion analyzer, together with magnetometers, constitutes the mass spectrum analyzer (MSA), one of the scientific instruments on board the MMX spacecraft. This paper describes the instrumentation of the ion analyzer, and results of the performance tests of its flight model (FM).
-
Earth, Planets and Space, 77(1), Jun 9, 2025 Peer-reviewedAbstract We developed an ultra-compact analog front-end for time-of-flight (TOF)-type ion mass spectrometers using application-specific integrated circuit (ASIC) technology. The front-end amplifies signals generated by the microchannel plate of the TOF-type ion mass spectrometer, uses a comparator to distinguish signals from noise, and generates detection signals compatible with low-voltage differential signaling (LVDS) standards for subsequent digital processing. Laboratory experiments with the developed ASIC, employing ion beam irradiation, demonstrated that the developed analog front-end has sufficient timing resolution. Temperature tests indicated minimal variation in the detectable input level of the front-end with temperature changes. The experimental results indicated that the developed ASIC front-end is suitable for TOF-type ion mass spectrometry in space applications. Graphical Abstract
-
Earth, Planets and Space, 77(1), May 26, 2025 Peer-reviewedAbstract The SS-520-3 sounding rocket was launched on November 4th, 2021 as part of the Grand Challenge Initiative - Cusp from Ny-Ålesund, Svalbard. The rocket was launched into the cusp ionosphere during the main phase of a geomagnetic storm. In this study we utilize two low energy particle analyzers as well as a multi-needle Langmuir probe and an impedance probe as part of the rocket payload. This study aims to provide an overview of the flight conditions from a range of ground-based instruments and scintillation receivers. We were able to confirm that the rocket entered the cusp through the poleward edge at around $$74^{\circ }$$ of northern geographic latitude. Additionally, the rocket encountered polar cap patches (PCP), as well as a patch within the cusp (CP) and a newly-formed tongue of ionisation (TOI). Analysis of the density variations within different scale sizes show enhancements within meter-size and kilometer-size scales on the edges of PCP, within the CP and TOI. Overall, the enhancements within the variations on all sizes, as well as enhancements of the electron density were significantly higher within the CP and TOI in comparison to the PCP, though all structures were encountered at similar altitudes. The strongest enhancements were found on the poleward edge of the TOI, corresponding to strong fluctuations within the electron density. The TOI also had the largest enhancements within gradients of kilometer-size in comparison to meter-sizes. As the TOI is convecting with respect to the background plasma, the edges are susceptible to instabilities like the Kelvin–Helmholtz instability (KHI) and Gradient-Drift instability (GDI), giving rise to plasma density structures on several scale sizes. Graphical Abstract
-
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 36(3) 553-564, Feb 10, 2025 Peer-reviewed
-
Geophysical Research Letters, 52(3), Feb 10, 2025 Peer-reviewedAbstract We report a statistical result of electrons inside the loss cone with energies of 67 eV–88 keV using electron measurements obtained in situ by the Arase satellite in the inner magnetosphere around the magnetic equator for 60 months. Loss cone electrons are found with a high occurrence probability from the nightside to the dawnside at approximately L = 6. For 641 eV–88 keV electrons, the high‐occurrence region shifts toward later magnetic local times (MLTs) with increasing loss cone electron energy. The spatial distribution of the occurrence probability around MLT = 22–3 at L = 5–6 is consistent with the calculated average resonance energy distribution of whistler mode chorus waves near the magnetic equator. These results suggest that pitch angle scattering driven by chorus waves plays the main role in electron precipitation in this region.
-
Journal of Geophysical Research: Space Physics, 130(2), Feb 6, 2025 Peer-reviewedAbstract Strong Thermal Emission Velocity Enhancement (STEVE) is a latitudinally narrow, purple‐band emission observed at subauroral latitudes. Stable Auroral Red (SAR) arcs characterized by major red emission, and red/green arcs with both red and green emissions also occur at subauroral latitudes. Characteristics of magnetospheric source plasma and electromagnetic fields of these three types of arcs have not been fully understood because of the limited conjugate observations between magnetosphere and the ground. In this study, we report 11 conjugate observations (2 STEVEs, 7 SAR arcs, and 2 red/green arcs), using all‐sky images obtained at seven ground stations over more than four years from January 2017 to April 2021 and magnetospheric satellites (Arase and Van Allen Probes). We found that, in the inner magnetosphere, the source region of STEVEs and red/green arcs were located outside the plasmasphere, and that of the SAR arc was in the region of spatial overlap between the plasmasphere and ring current region. Electromagnetic waves at frequencies below 1 Hz were observed for STEVEs and red/green arcs. SuperDARN radar data showed a strong westward plasma flow in the ionosphere, especially during STEVE events, whereas the plasma flows associated with SAR arcs and red/green arcs were generally weaker and variable. The STEVE and SAR arc can appear simultaneously at slightly different latitudes and STEVEs and red/green arcs can transform into SAR arcs. These first comprehensive ground‐satellite measurements of three types of subauroral‐latitude auroras increase our understanding on similarlity, differences, and coupling of these auroras in the ionosphere and the magnetosphere.
-
Vacuum, 114132-114132, Feb, 2025 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 129(11), Nov 12, 2024 Peer-reviewedAbstract We estimated the altitude of aurora by combining data from all‐sky cameras at multiple places which were obtained during the LAMP sounding rocket experiment in Alaska on 5 March 2022. During the launch window of the rocket, three high‐speed all‐sky cameras were operative at three stations immediately below the trajectory of the rocket: Poker Flat, Venetie and Fort Yukon. The all‐sky cameras captured all‐sky images with a temporal resolution of 100 Hz (80 Hz for the Fort Yukon case). The method of altitude determination is based on analyses of time‐series of the optical intensity obtained from the all‐sky cameras in Venetie and Poker Flat covering the downrange area of the rocket trajectory. The estimated altitude of pulsating aurora during the rocket experiment was found to be consistent with that derived from the in‐situ observation of precipitating electrons with a model of optical emission, which confirms the feasibility of deriving the emission altitude through correlation analyses using time‐series. The estimated altitude of aurora decreased after the expansion onset of the substorm and stayed slightly below 100 km during the interval of pulsating aurora in the recovery phase. In particular, prompt and brief lowering of the auroral emission, well down to around 90 km, was detected during a transition of auroral form from discrete to diffuse which occurred ∼10 min after the onset. This result implies an existence of a process causing harder electron precipitation operative soon after the start of the expansion phase of auroral substorm.
-
Journal of Geophysical Research: Space Physics, 129(10), Oct 5, 2024 Peer-reviewedAbstract We present an event based on Reimei satellite observations in the low‐altitude midnight auroral region, showing that intense and clear energy‐dispersed electron precipitations, repetitively generated by field‐aligned accelerations due to dispersive Alfvén waves, were modulating inverted‐V electrons. These Alfvénic electrons had peak energies equal to or slightly larger than those of the inverted‐Vs and were associated with the filamentary auroral forms rapidly streaming at the poleward edge of a broad discrete arc. This arc was caused by the inverted‐V accompanied by ion depletions produced by quasi‐electrostatic parallel potential drop. Assuming instantaneous electron accelerations over a wide energy range in a single location and a simple time‐of‐flight effect for the energy‐time dispersions, the Alfvénic source distances were estimated 1,500 ± 500 km above the satellite altitude of ∼676 km, a lower bound since the interaction locations are realistically distributed in altitudinally extended regions. The electron characteristics in detailed energy‐pitch angle distributions obtained at high time resolution can be categorized into: (a) original inverted‐V fluxes energized by quasi‐electrostatic upward electric field, (b) accelerated and decelerated/reduced inverted‐V fluxes, (c) field‐aligned energy‐dispersed precipitations accelerated by dispersive Alfvén waves, and (d) upwelling secondary components effectively produced by the field‐aligned precipitations particularly at energies of a few tens of eV. This event is useful to reveal the interactions between the inverted‐V and Alfvénic electrons and their related ionospheric effects in the magnetosphere‐ionosphere coupling processes. The detailed energy‐pitch angle distributions presented here provide constraints for models of these interactions and processes.
-
Geophysical Research Letters, 51(18), Sep 16, 2024 Peer-reviewedAbstract We analyzed time‐of‐flight (TOF) data from the Arase satellite to investigate temporal variations of the molecular ion group (O2+, NO+, and N2+) at 19.2 keV/q in the inner magnetosphere for 6 years from the solar declining to rising phase. The molecular ions counts were estimated by subtracting the background contamination of oxygen counts. While the number of clear molecular ion events was small, the estimated counts exhibited good correlation with the solar wind dynamic pressure and SYM‐H index. Long‐term variations of the molecular ions differed from those of counts of the O+ and N+ group. Additionally, we discuss the importance of the solar wind dynamic pressure in causing variations of molecular ions in the inner magnetosphere.
-
Journal of Geophysical Research: Space Physics, 129(9), Sep 12, 2024 Peer-reviewedAbstract The Arase satellite observed the precipitation of monoenergetic electrons accelerated from a very high altitude above 32,000 km altitude on 16 September 2017. The event was selected in the period when the high‐angular resolution channel of the electron detector looked at pitch angles within ∼5° from the ambient magnetic field direction, and thereby was the first to examine the detailed distribution of electron flux near the energy‐dependent loss cone at such high altitudes. The potential energy below the satellite estimated from the observed energy‐dependence of the loss cone was consistent with the energy of the upgoing ion beams, indicating that ionospheric ions were accelerated by a lower‐altitude acceleration region. The accelerated electrons inside the loss cone carried a significant net field‐aligned current (FAC) density corresponding to ionospheric‐altitude FAC of up to ∼3μA/m2. Based on the anisotropy of the accelerated electrons, we estimated the height of the upper boundary of the acceleration region to be >∼2 RE above the satellite. The height distribution of the acceleration region below the satellite, estimated from the frequency of auroral kilometric radiation, was ∼4,000–13,000 km altitude, suggesting that the very‐high‐altitude acceleration region was separated from the lower acceleration region. Additionally, we observed time domain structure (TDS) electric fields on a subsecond time scale with a thin FAC indicated by magnetic deflections. Such a TDS may be generated by the formation of double layers in the magnetotail, and its potential drop could significantly contribute (∼40%–60%) to the parallel energization of precipitating auroral electrons.
-
Journal of Geophysical Research: Space Physics, 129(6), May 31, 2024 Peer-reviewedAbstract We made observations of magnetic field variations in association with pulsating auroras with the magneto‐impedance sensor magnetometer (MIM) carried by the Loss through Auroral Microburst Pulsations (LAMP) sounding rocket that was launched at 11:27:30 UT on 5 March 2022 from Poker Flat Research Range, Alaska. At an altitude of 200–250 km, MIM detected clear enhancements of the magnetic field by 15–25 nT in both the northward and westward components. From simultaneous observations with the ground all‐sky camera, we found that the footprint of LAMP at the 100 km altitude was located near the center of a pulsating auroral patch. The auroral patch had a dimension of ∼90 km in latitude and ∼25 km in longitude, and its major axis was inclined toward northwest. These observations were compared with results of a simple model calculation, in which local electron precipitation into the thin‐layer ionosphere causes an elliptical auroral patch. The conductivity within the patch is enhanced in the background electric field and as a result, the magnetic field variations are induced around the auroral patch. The model calculation results can explain the MIM observations if the electric field points toward southeast and one of the model parameters is adjusted. We conclude that the pulsating auroral patch in this event was associated with a one‐pair field‐aligned current that consists of downward (upward) currents at the poleward (equatorward) edge of the patch. This current structure is maintained even if the auroral patch is latitudinally elongated.
-
Journal of Geophysical Research: Space Physics, 129(5), May 15, 2024 Peer-reviewedAbstract We present the simultaneous and conjugated auroral emission and particle data obtained by a low‐altitude polar‐orbiting micro‐satellite, Reimei, for elucidating their latitudinal distributions and variations in the nightside auroral oval. Here are reported a few notable examples of the Reimei observations with high time and spatial resolutions, namely ∼120 msec. and ∼1.2 km × 1.2 km for multispectral auroral images and 40 msec. for energy‐pitch angle distributions of electrons and ions with energies of 10 eV–12 keV, respectively. The auroral images show various fine‐scale auroral activities characterized by the following types of auroral forms and variations: faint bands, streaming multiple arcs, shearing arcs, and vortices/curls, which are typical of the latitudinal properties of auroras. The particle analyzer simultaneously observed various properties of electron energy‐pitch angle and latitudinal distributions, and their temporal variations, each of which corresponds to a type of the auroral activities. Their features are summarized below. Reimei repetitively observed inverted‐V signatures of low‐energy (<1 keV) field‐aligned electrons in addition to the higher‐energy (several keV) diffuse electrons in low‐latitude auroral oval. In more active regions at higher latitudes, the dominant energy flux responsible for the multiple‐arc emissions was carried by the well‐known inverted‐V electron precipitation. The rapidly rotating vortices or so‐called curls of fine‐scale discrete auroras near the poleward boundary of the auroral oval were closely associated with the significant energy fluxes of spiky field‐aligned electron bursts with energy‐time dispersions produced by dispersive Alfvén waves.
-
Journal of Geophysical Research: Space Physics, 129(5), May 6, 2024 Peer-reviewedAbstract This is the first report of significant energization (up to 7,000 eV) of low‐energy He+ ions, which occurred simultaneously with H‐band electromagnetic ion cyclotron (EMIC) wave activity, in a direction mostly perpendicular to the ambient magnetic field. The event was detected by the Arase satellite in the dayside plasmatrough region off the magnetic equator on 15 May 2019. The peak energy of the He+ flux enhancements is mostly above 1,000 eV. At some interval, the He+ ions are energized up to ∼7,000 eV. The H‐band waves are excited in a frequency band between the local crossover and helium gyrofrequencies and are close to a linear polarization state with weakly left‐handed or right‐handed polarization. The normal angle of the waves exhibits significant variation between 0° and 80°, indicating a non‐parallel propagation. We run a hybrid code with parameters estimated from the Arase observations to examine the He+ energization. The simulations show that cold He+ ions are energized up to more than 1,000 eV, similar to the spacecraft observations. From the analysis of the simulated wave fields and cold plasma motions, we found that the ratio of the wave frequency to He+ gyrofrequency is a primary factor for transverse energization of cold He+ ions. As a consequence of the numerical analysis, we suggest that the significant transverse energization of He+ ions observed by Arase is attributed to H‐band EMIC waves excited near the local helium gyrofrequency.
-
Geophysical Research Letters, 51(8), Apr 17, 2024 Peer-reviewedAbstract We present the first direct evidence of an in situ excitation of drift‐compressional waves driven by drift resonance with ring current protons in the magnetosphere. Compressional Pc4–5 waves with frequencies of 4–12 mHz were observed by the Arase satellite near the magnetic equator at L ∼ 6 in the evening sector on 19 November 2018. Estimated azimuthal wave numbers (m) ranged from −100 to −130. The observed frequency was consistent with that calculated using the drift‐compressional mode theory, whereas the plasma anisotropy was too small to excite the drift‐mirror mode. We discovered that the energy source of the wave was a drift resonance instability, which was generated by the negative radial gradient in a proton phase space density at 20–25 keV. This proton distribution is attributed to a temporal variation of the electric field, which formed the observed multiple‐nose structures of ring current protons.
-
Earth, Planets and Space, 76(1), Apr 6, 2024 Peer-reviewedAbstract We have developed a low-energy particle experiment that alternately measures ions and electrons in space. The ability to switch between ion and electron measurements is achieved by simply adding ultra-thin carbon foils and positive and negative outputs to a conventional top-hat electrostatic analyzer and a high-voltage power supply, respectively. The advantage of this experiment is that it can perform both ion and electron measurements using only one MCP-based detector for electrons, since it detects secondary electrons emitted from the carbon foils. For the SS520-3 sounding rocket program, we prepared two identical energy analyzers, one for ions and the other for electrons to demonstrate this technique. Laboratory tests confirmed that the performance of the two analyzers was comparable to that of conventional analyzers for ion and electrons. The SS520-3 rocket experiment in the high latitude auroral region yielded observations that captured typical features of ions and electrons, which were similar to previous observations. Graphical Abstract
-
Geophysical Research Letters, 50(24), Dec 13, 2023 Peer-reviewedAbstract We have identified for the first time an energy‐time dispersion of precipitating electron flux in a pulsating aurora patch, ranging from 6.7 to 580 keV, through simultaneous in‐situ observations of sub‐relativistic electrons of microburst precipitations and lower‐energy electrons using the Loss through Auroral Microburst Pulsation sounding rocket launched from the Poker Flat Research Range in Alaska. Our observations reveal that precipitating electrons with energies of 180–320 keV were observed first, followed by 250–580 keV electrons 0–30 ms later, and finally, after 500–1,000 ms, 6.7–14.6 keV electrons were observed. The identified energy‐time dispersion is consistent with the theoretical estimation that the relativistic electron microbursts are a high‐energy tail of pulsating aurora electrons, which are caused by chorus waves propagating along the field line.
-
Nature Communications, 14(1), Oct 30, 2023 Peer-reviewedAbstract Both solar wind and ionospheric sources contribute to the magnetotail plasma sheet, but how their contribution changes during a geomagnetic storm is an open question. The source is critical because the plasma sheet properties control the enhancement and decay rate of the ring current, the main cause of the geomagnetic field perturbations that define a geomagnetic storm. Here we use the solar wind composition to track the source and show that the plasma sheet source changes from predominantly solar wind to predominantly ionospheric as a storm develops. Additionally, we find that the ionospheric plasma during the storm main phase is initially dominated by singly ionized hydrogen (H+), likely from the polar wind, a low energy outflow from the polar cap, and then transitions to the accelerated outflow from the dayside and nightside auroral regions, identified by singly ionized oxygen (O+). These results reveal how the access to the magnetotail of the different sources can change quickly, impacting the storm development.
-
Journal of Geophysical Research: Space Physics, 128(10), Sep 28, 2023 Peer-reviewedAbstract Although many substorm‐related observations have been made, we still have limited insight into propagation of the plasma and field perturbations in Pi2 frequencies (∼7‐25 mHz) in association with substorm aurora, particularly from the auroral source region in the inner magnetosphere to the ground. In this study, we present conjugate observations of a substorm brightening aurora using an all‐sky camera and an inner‐magnetospheric satellite Arase at L ∼ 5. A camera at Gakona (62.39oN, 214.78oE), Alaska, observed a substorm auroral brightening on December 28, 2018, and the footprint of the satellite was located just equatorward of the aurora. Around the timing of the auroral brightening, the satellite observed a series of quasi‐periodic variations in the electric and magnetic fields and in the energy flux of electrons and ions. We demonstrate that the diamagnetic variations of thermal pressure and medium‐energy ion energy flux in the inner magnetosphere show approximately one‐to‐one correspondence with the oscillations in luminosity of the substorm brightening aurora and high‐latitudinal Pi2 pulsations on the ground. We also found their anti‐correlation with low‐energy electrons. Cavity‐type Pi2 pulsations were observed at mid‐ and low‐latitudinal stations. Based on these observations, we suggest that a wave phenomenon in the substorm auroral source region, like ballooning type instability, play an important role in the development of substorm and related auroral brightening and high‐latitude Pi2, and that the variation of the auroral luminosity was directly driven by keV electrons which were modulated by Alfven waves in the inner magnetosphere.
-
Journal of Geophysical Research: Space Physics, Sep 4, 2023 Peer-reviewedAbstract Using Arase observations of the inner magnetosphere during 26 CIR‐driven geomagnetic storms with minimum Sym‐H between ‐33 and ‐86 nT, we investigated ring current pressure development of ions (H+, He+, O+) and electron during prestorm, main, early recovery and late recovery phases as a function of L‐shell and magnetic local time. It is found that during the main and early recovery phase of the storms the ion pressure is asymmetric in the inner magnetosphere, leading to a strong partial ring current. The ion pressure becomes symmetric during the late recovery phase. H+ ions with energies of ∼20‐50 keV and ∼50‐100 keV contribute more to the ring current pressure during the main phase and early/late recovery phase, respectively. O+ ions with energies of ∼10‐20 keV contribute significantly during main and early recovery phase. These are consistent with previous studies. The electron pressure was found to be asymmetric during the main, early recovery and late recovery phase. The electron pressure peaks from midnight to the dawn sector. Electrons with energy of <50 keV contribute to the ring current pressure during the main and early recovery phase of the storms. Overall, the electron contribution to the total ring current is found to be ∼11% during the main and early recovery phases. However, the electron contribution is found to be significant (∼22%) in the 03‐09 MLT sector during the main and early recovery phase. The results indicate an important role of electrons in the ring current build up. This article is protected by copyright. All rights reserved.
-
Nature Communications, 14(1), Jul 18, 2023 Peer-reviewedAbstract Mercury’s magnetosphere is known to involve fundamental processes releasing particles and energy like at Earth due to the solar wind interaction. The resulting cycle is however much faster and involves acceleration, transport, loss, and recycling of plasma. Direct experimental evidence for the roles of electrons during this cycle is however missing. Here we show that in-situ plasma observations obtained during BepiColombo’s first Mercury flyby reveal a compressed magnetosphere hosts of quasi-periodic fluctuations, including the original observation of dynamic phenomena in the post-midnight, southern magnetosphere. The energy-time dispersed electron enhancements support the occurrence of substorm-related, multiple, impulsive injections of electrons that ultimately precipitate onto its surface and induce X-ray fluorescence. These observations reveal that electron injections and subsequent energy-dependent drift now observed throughout Solar System is a universal mechanism that generates aurorae despite the differences in structure and dynamics of the planetary magnetospheres.
-
Journal of Geophysical Research: Space Physics, May 29, 2023 Peer-reviewed
-
Earth, Planets and Space, 74(1), Dec 23, 2022 Peer-reviewedAbstract Plasma particles and waves are important observation targets in space plasmas for understanding the mechanisms of energy and momentum transfer between waves and particles because space plasmas are essentially collisionless. Multi-point observations are crucial for understanding the spatial–temporal variations of space plasmas. To realize such observations by a large number of satellites, onboard instruments should be miniaturized to reduce their required resources. This paper proposes a small amplifier for plasma particle detectors onboard satellites. This charge-sensitive amplifier converts an electron cloud emitted from the detector, for example a microchannel plate, to a current pulse that can be handled by a time-of-flight measurement circuit to determine the particle velocity and thus mass. The amplifier is realized using application-specific integrated circuit technology to minimize size. Its dimensions are estimated to be $$2120\,\mathrm{ \mu m }\times 1680\,\mathrm{ \mu m}$$, which are much smaller than those of a conventional amplifier. The response time of the proposed amplifier has a variation of less than $$1.2\,\mathrm{ ns}$$ over the range of expected input levels. The amplifier can handle up to $$2\times {10}^{7}$$ signals per second and has a sensitivity of $$1.5\,\mathrm{ V}/\mathrm{pC}$$ at $$20\,\mathrm{^\circ{\rm C} }$$. Graphical Abstract
-
Nature Communications, 13(1), Dec 15, 2022 Peer-reviewedAbstract The second Venus flyby of the BepiColombo mission offer a unique opportunity to make a complete tour of one of the few gas-dynamics dominated interaction regions between the supersonic solar wind and a Solar System object. The spacecraft pass through the full Venusian magnetosheath following the plasma streamlines, and cross the subsolar stagnation region during very stable solar wind conditions as observed upstream by the neighboring Solar Orbiter mission. These rare multipoint synergistic observations and stable conditions experimentally confirm what was previously predicted for the barely-explored stagnation region close to solar minimum. Here, we show that this region has a large extend, up to an altitude of 1900 km, and the estimated low energy transfer near the subsolar point confirm that the atmosphere of Venus, despite being non-magnetized and less conductive due to lower ultraviolet flux at solar minimum, is capable of withstanding the solar wind under low dynamic pressure.
-
Journal of Geophysical Research: Space Physics, 127(11), Oct 17, 2022 Peer-reviewed
-
Space Science Reviews, 218(5), Aug, 2022 Peer-reviewed
-
Geophysical Research Letters, 49(10), May, 2022 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 127(5), Apr 7, 2022 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 127(3), Mar 10, 2022 Peer-reviewed
-
Physical Review Letters, 127(24), Dec 10, 2021 Peer-reviewedLead author
-
Geophysical Research Letters, 48(23), Dec 8, 2021 Peer-reviewed
-
Earth, Planets and Space, 73(1), Dec, 2021 Peer-reviewed<title>Abstract</title>The mass spectrum analyzer (MSA) will perform in situ observations of ions and magnetic fields around Phobos as part of the Martian Moons eXploration (MMX) mission to investigate the origin of the Martian moons and physical processes in the Martian environment. MSA consists of an ion energy mass spectrometer and two magnetometers which will measure velocity distribution functions and mass/charge distributions of low-energy ions and magnetic field vectors, respectively. For the MMX scientific objectives, MSA will observe solar wind ions, those scattered at the Phobos surface, water-related ions generated in the predicted Martian gas torus, secondary ions sputtered from Phobos, and escaping ions from the Martian atmosphere, while monitoring the surrounding magnetic field. MSA will be developed from previous instruments for space plasma missions such as Kaguya, Arase, and BepiColombo/Mio to contribute to the MMX scientific objectives.
-
Journal of Geophysical Research: Space Physics, 126(12), Nov 26, 2021 Peer-reviewed
-
Geophysical Research Letters, 48(18), Sep 16, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(9), Sep, 2021 Peer-reviewed
-
Space Science Reviews, 217(5), Aug, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(9), Jul 20, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, Jul 16, 2021 Peer-reviewed
-
Arase observation of simultaneous electron scatterings by upper‐band and lower‐band chorus emissionsGeophysical Research Letters, 48(14), Jul 15, 2021 Peer-reviewed
-
Geophysical Research Letters, Jun 30, 2021 Peer-reviewed
-
Scientific Reports, 11(1), Jun 29, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(7), Jun 19, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(7), Jun 17, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(6), Jun 11, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(5), Apr 13, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(4), Mar 12, 2021 Peer-reviewed
-
Journal of Geophysical Research: Space Physics, 126(3), Feb 12, 2021 Peer-reviewed
Misc.
137-
地球電磁気・地球惑星圏学会総会及び講演会(Web), 156th, 2024
-
地球電磁気・地球惑星圏学会総会及び講演会(Web), 154th, 2023
Professional Memberships
2Research Projects
20-
科学研究費助成事業, 日本学術振興会, Apr, 2025 - Mar, 2030
-
Grants-in-Aid for Scientific Research Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)), Japan Society for the Promotion of Science, Oct, 2022 - Mar, 2027
-
科学研究費助成事業 基盤研究(A), 日本学術振興会, Apr, 2021 - Mar, 2026
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory), Japan Society for the Promotion of Science, Jun, 2022 - Mar, 2025
-
科学研究費助成事業 基盤研究(B), 日本学術振興会, Apr, 2021 - Mar, 2024