Curriculum Vitaes
Profile Information
- Affiliation
- Professer, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- Degree
- Ph. D(Mar, 1998, Waseda University)
- J-GLOBAL ID
- 200901062235719944
- researchmap Member ID
- 1000320874
Research Interests
4Research Areas
4Education
1-
- 1998
Papers
157-
Journal of Geophysical Research: Space Physics, 129(12), Dec 13, 2024Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.
-
Journal of Geophysical Research: Space Physics, 129(11), Oct 28, 2024Abstract Near‐equatorial measurements of energetic electron fluxes, in combination with numerical simulation, are widely used for monitoring of the radiation belt dynamics. However, the long orbital periods of near‐equatorial spacecraft constrain the cadence of observations to once per several hours or greater, that is, much longer than the mesoscale injections and rapid local acceleration and losses of energetic electrons of interest. An alternative approach for radiation belt monitoring is to use measurements of low‐altitude spacecraft, which cover, once per hour or faster, the latitudinal range of the entire radiation belt within a few minutes. Such an approach requires, however, a procedure for mapping the flux from low equatorial pitch angles (near the loss cone) as measured at low altitude, to high equatorial pitch angles (far from the loss cone), as necessitated by equatorial flux models. Here we do this using the high energy resolution ELFIN measurements of energetic electrons. Combining those with GPS measurements we develop a model for the electron anisotropy coefficient, , that describes electron flux dependence on equatorial pitch‐angle, , . We then validate this model by comparing its equatorial predictions from ELFIN with in‐situ near‐equatorial measurements from Arase (ERG) in the outer radiation belt.
-
Journal of Evolving Space Activities, 2 n/a, 2024The Institute of Space and Astronautical Science (ISAS) of the Japan Aerospace Exploration Agency (JAXA) conducts a deep space exploration mission named Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science (DESTINY+). The mission requires a high-performance, compact solid kick stage with a high mass ratio and high system safety. The kick stage employes a newly developed laser ignition system to meet these requirements. We designed a laser unit for upper stages (LUUS), two types of laser-initiated pyrotechnic devices for solid motor ignition and a separation device actuator (the LID and LCTG) for the kick stage system. Optical fiber paths connecting the LUUS to LID/LCTG enables a continuity check by optical frequency domain reflectometry (OFDR). We successfully conducted continuity checks with OFDR and ran laser ignition tests to validate the design in simulating assembly- and launchsite operations.
-
Earth, Planets and Space, 75(1), Dec 21, 2023Abstract Variations of relativistic electron fluxes (E ≥ 1 MeV) and wave activity in the Earth magnetosphere are studied to determine the contribution of different acceleration mechanisms of the outer radiation belt electrons: ULF mechanism, VLF mechanism, and adiabatic acceleration. The electron fluxes were measured by Arase satellite and geostationary GOES satellites. The ULF power index is used to characterize the magnetospheric wave activity in the Pc5 range. To characterize the VLF wave activity in the magnetosphere, we use data from PWE instrument of Arase satellite. We consider some of the most powerful magnetic storms during the Arase era: May 27–29, 2017; September 7–10, 2017; and August 25–28, 2018. Also, non-storm intervals with a high solar wind speed before and after these storms for comparison are analyzed. Magnitudes of relativistic electron fluxes during these magnetic storms are found to be greater than that during non-storm intervals with high solar wind streams. During magnetic storms, the flux intensity maximum shifts to lower L-shells compared to intervals without magnetic storms. For the considered events, the substorm activity, as characterized by AE index, is found to be a necessary condition for the increase of relativistic electron fluxes, whereas a high solar wind speed alone is not sufficient for the relativistic electron growth. The enhancement of relativistic electron fluxes by 1.5–2 orders of magnitude is observed 1–3 days after the growth of the ULF index and VLF emission power. The growth of VLF and ULF wave powers coincides with the growth of substorm activity and occurs approximately at the same time. Both mechanisms operate at the first phase of electron acceleration. At the second phase of electron acceleration, the mechanism associated with the injection of electrons into the region of the magnetic field weakened by the ring current and their subsequent betatron acceleration during the magnetic field restoration can work effectively. Graphical Abstract
-
Journal of Evolving Space Activities, 1, Dec, 2023 Peer-reviewed
-
Infrared Remote Sensing and Instrumentation XXX, Sep 30, 2022
-
Space Science Reviews, 218(5), Aug, 2022Abstract This paper presents the highlights of joint observations of the inner magnetosphere by the Arase spacecraft, the Van Allen Probes spacecraft, and ground-based experiments integrated into spacecraft programs. The concurrent operation of the two missions in 2017–2019 facilitated the separation of the spatial and temporal structures of dynamic phenomena occurring in the inner magnetosphere. Because the orbital inclination angle of Arase is larger than that of Van Allen Probes, Arase collected observations at higher $L$-shells up to $L \sim 10$. After March 2017, similar variations in plasma and waves were detected by Van Allen Probes and Arase. We describe plasma wave observations at longitudinally separated locations in space and geomagnetically-conjugate locations in space and on the ground. The results of instrument intercalibrations between the two missions are also presented. Arase continued its normal operation after the scientific operation of Van Allen Probes completed in October 2019. The combined Van Allen Probes (2012-2019) and Arase (2017-present) observations will cover a full solar cycle. This will be the first comprehensive long-term observation of the inner magnetosphere and radiation belts.
-
ACTA ASTRONAUTICA, 196 42-56, Jul, 2022
-
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 127(5), May, 2022
-
Geophysical Research Letters, 49(5), Mar 16, 2022
-
Journal of Space Weather and Space Climate, 12 18-18, 2022Many studies have been conducted about the impact of energetic charged particles on the atmosphere during geomagnetically active times, while quiet time effects are poorly understood. We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. The calculated ionization level due to the precipitating electrons is consistent with the observed value of cosmic noise absorption. The possible spatial extent of EEP is estimated to be ~8 h MLT in longitude and ~1.5° in latitude from a global magnetohydrodynamic simulation REPPU and the precipitating electron observations by the POES satellite, respectively. Such a significant duration and spatial extent of EEP events suggest a non-negligible contribution of the growth phase EEP to the mesospheric ionization. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.
-
Scientific Reports, 11(1), Dec, 2021
-
Earth, Planets and Space, 73(1), Dec, 2021 Peer-reviewed<title>Abstract</title>Although solar activity may significantly impact the global environment and socioeconomic systems, the mechanisms for solar eruptions and the subsequent processes have not yet been fully understood. Thus, modern society supported by advanced information systems is at risk from severe space weather disturbances. Project for solar–terrestrial environment prediction (PSTEP) was launched to improve this situation through synergy between basic science research and operational forecast. The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. By this project, we sought to answer the fundamental questions concerning the solar–terrestrial environment and aimed to build a next-generation space weather forecast system to prepare for severe space weather disasters. The PSTEP consists of four research groups and proposal-based research units. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.
-
Journal of Geophysical Research: Space Physics, 126(11), Nov, 2021
-
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 68(8) 1764-1771, Aug, 2021
-
Space Science Reviews, 217(5), Aug, 2021
-
Arase Observation of Simultaneous Electron Scatterings by Upper-Band and Lower-Band Chorus EmissionsGeophysical Research Letters, 48(14), Jul 28, 2021
-
Journal of Geophysical Research: Space Physics, 126(7), Jul, 2021
-
Journal of Geophysical Research: Space Physics, 126(7), Jun 28, 2021
-
Progress of Theoretical and Experimental Physics, 2021(5), May 18, 2021Abstract The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy.
-
Journal of Geophysical Research: Space Physics, 126(4), Apr, 2021
-
Geophysical Research Letters, 48(5), Mar 16, 2021
-
Scientific Reports, 10(1), Dec, 2020<title>Abstract</title>The brightness of aurorae in Earth’s polar region often beats with periods ranging from sub-second to a few tens of a second. Past observations showed that the beat of the aurora is composed of a superposition of two independent periodicities that co-exist hierarchically. However, the origin of such multiple time-scale beats in aurora remains poorly understood due to a lack of measurements with sufficiently high temporal resolution. By coordinating experiments using ultrafast auroral imagers deployed in the Arctic with the newly-launched magnetospheric satellite Arase, we succeeded in identifying an excellent agreement between the beats in aurorae and intensity modulations of natural electromagnetic waves in space called “chorus”. In particular, sub-second scintillations of aurorae are precisely controlled by fine-scale chirping rhythms in chorus. The observation of this striking correlation demonstrates that resonant interaction between energetic electrons and chorus waves in magnetospheres orchestrates the complex behavior of aurora on Earth and other magnetized planets.
-
Aerospace, 7(7) 97-97, Jul 13, 2020JAXA’s ERG (Exploration of Energization and Radiation in Geospace) Spacecraft, which is nicknamed Arase, was launched on 20 December 2016. Arase is a spin-stabilized and Sun-oriented spacecraft. Its mission is to explore how relativistic electrons in the radiation belts are generated during space storms. Two different on-ground attitude determination algorithms are designed for the mission: A TRIAD-based algorithm that inherits from old missions and a filtering-based new algorithm. This paper, first, discusses the design of the filtering-based attitude determination algorithm, which is mainly based on an Unscented Kalman Filter (UKF), specifically designed for spinning spacecraft (SpinUKF). The SpinUKF uses a newly introduced set of attitude parameters (i.e., spin-parameters) to represent the three-axis attitude of the spacecraft and runs UKF for attitude estimation. The paper then presents the preliminary attitude estimation results for the spacecraft that are obtained after the launch. The results are presented along with the encountered challenges and suggested solutions for them. These preliminary attitude estimation results show that the expected accuracy of the fine attitude estimation for the spacecraft is less than 0.5°.
-
Space Science Reviews, 216(3), Apr, 2020
-
Geophysical Research Letters, 47(2), Jan 28, 2020
-
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN, 18(6) 398-403, 2020The high-energy electron experiments (HEP) instrument on board the Arase satellite employs two sensors, HEP-L and HEP-H, and was designed to measure electrons with energies from 70 keV to 2 MeV. The recent Van Allen Probes observations indicate that MeV electron flux is very small in the inner radiation belt, while the HEP has detected significant counts at MeV energy channels in the inner radiation belt. Counts in the inner radiation belt are registered similarly at different energy channels of HEP-H and higher energy channels of HEP-L, and show no clear energy dependence. Their properties suggest contamination of high-energy protons that populate densely the inner radiation belt. In order to identify the energy of the penetrating protons we compare the spatial distribution of the HEP counts with NASA's AP9 mean model. We find that the primary peak of the count distribution measured with HEP in MeV energy range is located at L = 1.5 at the magnetic equator, which in in agreement of > 60 MeV inner belt protons of AP9 mean model. The secondary distribution is also found at higher L values, which can be attributed to MeV protons. We have been conducting Geant4 simulation for penetrating protons into the HEP. Our result of the simulation is consistent with suggestions of analysis on the spatial distribution.
-
APPLIED THERMAL ENGINEERING, 165, Jan, 2020
-
AIAA Scitech 2020 Forum, 1 PartF, 2020
-
Geophysical Research Letters, 46(21) 11642-11651, Nov 16, 2019 Peer-reviewed
-
International Journal of Modern Physics D, 28(12), Sep 1, 2019
-
EARTH PLANETS AND SPACE, 71, Feb 18, 2019 Peer-reviewed
-
EARTH PLANETS AND SPACE, 71 9, Jan, 2019 Peer-reviewed
-
Geophysical Research Letters, 45(23), Dec 16, 2018
-
Earth, Planets and Space, 70(1), Dec 1, 2018 Peer-reviewed
-
GEOPHYSICAL RESEARCH LETTERS, 45(24) 13199-13205, Dec, 2018 Peer-reviewed
-
Earth, Planets and Space, 70(1), Dec 1, 2018
-
Earth, Planets and Space, 70(1), Dec 1, 2018
-
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN, 16(7) 687-690, Nov, 2018 Peer-reviewedDisturbances in space environment around the Earth (Geospace disturbances), which are driven by the solar activities, are causes of spacecraft anomalies, radiation hazards of astronauts and aircrews on polar route, problem of navigations and HF communications, and induction current in long-line power cables. To mitigate the risk of geospace disturbances, improvement of operational space weather forecast with high precision based on numerical forecast scheme would be important. However, the poor observation points in geospace prevent us to introduce numerical forecast scheme with data assimilation technique which was common in terrestrial weather forecast. To breakthrough this situation, we are planning to develop a space environment sensor package, which can contribute to safety operation of the micro satellite itself, and to realize low-cost global monitoring of space environment based on constellation of micro satellites. Space weather observations by several tens of micro satellite constellation enables us to narrow down the sensor performance of single satellite. The optimization strategy of sensor performance for further miniaturization and power saving can accelerate mountability of the package. Based on this approach, it is expected that numerical forecast scheme with data assimilation technique will be introduced for operational space weather forecast in the future.
-
Geophysical Research Letters, 45(20) 10,819-10,828, Oct 28, 2018 Peer-reviewed
-
Geophysical Research Letters, 45(19) 10075-10083, Oct 16, 2018 Peer-reviewed
-
Geophysical Research Letters, 45(18) 9441-9449, Sep 28, 2018
-
EARTH PLANETS AND SPACE, 70, Aug, 2018
-
EARTH PLANETS AND SPACE, 70, Jun, 2018
Misc.
186-
日本地球惑星科学連合大会予稿集(Web), 2023, 2023
-
宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023
-
宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023
Professional Memberships
5Research Projects
30-
科学研究費助成事業, 日本学術振興会, Apr, 2020 - Mar, 2023
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2016 - Mar, 2020
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (A), Japan Society for the Promotion of Science, Apr, 2014 - Mar, 2017
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Jun, 2012 - Mar, 2017
-
Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A), Japan Society for the Promotion of Science, Apr, 2012 - Mar, 2016