Curriculum Vitaes
Profile Information
- Affiliation
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- Researcher number
- 00270439
- ORCID ID
https://orcid.org/0000-0003-4780-800X
- J-GLOBAL ID
- 200901004756228297
- researchmap Member ID
- 5000050882
Research Areas
1Papers
192-
GEOCHEMICAL JOURNAL, 2025
-
Meteoritics & Planetary Science, 60(2) 273-285, Dec 24, 2024Abstract Understanding the processes of aqueous alteration within primitive bodies is crucial for unraveling the complex history of early planetesimals. To better identify the signs of this process and its consequences, we have studied the heterogeneity at a micrometric scale of the structure of the aliphatic organic compounds and its relationship to its mineralogical environment. Here, we report an analysis performed on two micrometric grains of Ryugu (C0002‐FC027 and C0002‐FC028). The samples were crushed in a diamond compression cell and analyzed using high‐spatial resolution Fourier Transform InfraRed (FT‐IR) hyperspectral imaging measurements conducted in transmission mode. We showed here the spatial distributions of the main components and the structural heterogeneity of the aliphatic organic matter highlighting a micrometer‐scale variability in the methylene‐to‐methyl ratio. Moreover, we connected this heterogeneity to the one of the phyllosilicate band positions. Our findings indicate that the organic matter within Ryugu's micrometric grains underwent varying degrees of aqueous alteration in distinct microenvironments resulting in an elongation of the length of their aliphatic chains, and/or a reduction in their branching and/or cross‐linking.
-
Meteoritics & Planetary Science, 60(1) 3-16, Nov 25, 2024 Peer-reviewedAbstract Nucleosynthetic isotope variations are powerful tracers to determine genetic relationships between meteorites and planetary bodies. They can help to link material collected by space missions to known meteorite groups. The Hayabusa 2 mission returned samples from the Cb‐type asteroid (162173) Ryugu. The mineralogical, chemical, and isotopic characteristics of these samples show strong similarities to carbonaceous chondrites and in particular CI chondrites. The nucleosynthetic isotope compositions of Ryugu overlap with CI chondrites for several elements (e.g., Cr, Ti, Fe, and Zn). In contrast to these isotopes, which are of predominately supernovae origin, s‐process variations in Mo isotope data are similar to those of carbonaceous chondrites, but even more s‐process depleted. To further constrain the origin of this depletion and test whether this signature is also present for other s‐process elements, we report Zr isotope compositions for three bulk Ryugu samples (A0106, A0106‐A0107, C0108) collected from the Hayabusa 2 mission. The data are complemented with that of terrestrial rock reference materials, eucrites, and carbonaceous chondrites. The Ryugu samples are characterized by distinct 96Zr enrichment relative to Earth, indicative of a s‐process depletion. Such depletion is also observed for carbonaceous chondrites and eucrites, in line with previous Zr isotope work, but it is more extreme in Ryugu, as observed for Mo isotopes. Since s‐process Zr and Mo are coupled in mainstream SiC grains, these distinct s‐process variations might be due to SiC grain depletion in the analyzed materials, potentially caused by incomplete sample digestion, because the Ryugu samples were dissolved on a hotplate only to avoid high blank levels for other elements (e.g., Cr). However, local depletion of SiC grains cannot be excluded. An alternative, equally possible scenario is that aqueous alteration redistributed anomalous, s‐process‐depleted, Zr on a local scale, for example, into Ca‐phosphates or phyllosilicates.
-
Nature Astronomy, 8 1529-1535, Sep 25, 2024
-
Nature Communications, 15(1), Aug 29, 2024Abstract Primordial carbon delivered to the early earth by asteroids and meteorites provided a diverse source of extraterrestrial organics from pre-existing simple organic compounds, complex solar-irradiated macromolecules, and macromolecules from extended hydrothermal processing. Surface regolith collected by the Hayabusa2 spacecraft from the carbon-rich asteroid 162173 Ryugu present a unique opportunity to untangle the sources and processing history of carbonaceous matter. Here we show carbonaceous grains in Ryugu can be classified into three main populations defined by spectral shape: Highly aromatic (HA), Alkyl-Aromatic (AA), and IOM-like (IL). These carbon populations may be related to primordial chemistry, since C and N isotopic compositions vary between the three groups. Diffuse carbon is occasionally dominated by molecular carbonate preferentially associated with coarse-grained phyllosilicate minerals. Compared to related carbonaceous meteorites, the greater diversity of organic functional chemistry in Ryugu indicate the pristine condition of these asteroid samples.
Misc.
493-
Abstract of 54th Lunar and Planetary Science Conference 2023, 1959, Mar, 2023
-
Abstract of 54th Lunar and Planetary Science Conference 2023, 1093, Mar, 2023
-
Abstract of 54th Lunar and Planetary Science Conference 2023, 1040, Mar, 2023
-
日本惑星科学会秋季講演会予稿集(Web), 2023, 2023
-
Abstract of the 13th Symposium on Polar Science, OA016, Nov, 2022
-
Abstract of the 13th Symposium on Polar Science, OA014, Nov, 2022
-
Absract of Hayabusa Symposium 2022, S32-10, Nov, 2022
-
Absract of Hayabusa Symposium 2022, S32-05, Nov, 2022
-
Absract of Hayabusa Symposium 2022, S22-07, Nov, 2022
-
Absract of Hayabusa Symposium 2022, S22-03, Nov, 2022
-
Absract of Hayabusa Symposium 2022, S11-02, Nov, 2022
-
16th Europlanet Science Congress 2022, EPSC2022-898, Sep 23, 2022
-
Abstract of JpGU 2022, PSS03-P16, May, 2022
-
Abstract of JpGU 2022, PSS03-P14, May, 2022
-
Abstract of JpGU 2022, PPS03-11, May, 2022
-
Hayabusa2 returned samples: Unique and pristine record of Solar System materials from asteroid RyuguAbstract of JpGU 2022, PPS03-10, May, 2022
-
Abstract of JpGU 2022, PPS03-09, May, 2022
-
Abstract of JpGU 2022, PPS03-08, May, 2022
-
Abstract of JpGU 2022, PPS03-07, May, 2022
-
Abstract of JpGU 2022, PPS03-06, May, 2022
-
Abstract of JpGU 2022, PPS03-01, May, 2022
-
Abstracts of Annual Meeting of the Geochemical Society of Japan, 69 102, 2022
-
Abstracts of Annual Meeting of the Geochemical Society of Japan, 69 216, 2022
-
令和2年度宇宙科学に関する室内実験シンポジウム 講演集 = Proceedings of 2021 Symposium on Laboratory Experiment for Space Science, Mar, 2021令和2年度宇宙科学に関する室内実験シンポジウム(2021年3月5日. オンライン開催) 2021 Symposium on Laboratory Experiment for Space Science (March 5, 2021. Online Meeting) 資料番号: SA6000161027 レポート番号: 27
-
Sample Return Missions. The Last Frontier of Solar System Exploration (book), Chapter 12, 1 241-247, 2021 Peer-reviewed
Books and Other Publications
3Presentations
2Research Projects
9-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2019 - Mar, 2022
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2016 - Mar, 2019
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2006 - 2007
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2005 - 2006
-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, 2002 - 2003