研究者業績
基本情報
研究分野
1学歴
3-
1999年4月 - 2002年3月
-
1985年4月 - 1987年3月
-
1981年4月 - 1985年3月
論文
199-
Thermochimica Acta 747 179976-179976 2025年5月 査読有り
-
The Journal of Chemical Physics 162(12) 2025年3月24日 査読有りRare earth aluminum garnets are important materials in optical, dielectric, and thermal barrier applications. To advance the understanding of their melt processing and glass forming ability, we report the atomic structure of molten Yb3Al5O12 over 1770–2630 K, which spans the equilibrium and supercooled liquid regimes. The melt density at Tm = 2283 K is 5.50 g cm−3, measured via silhouette imaging of electrostatically levitated drops over 1010–2420 K. Four separate structure measurements were made with aerodynamically levitated melts using x-ray and neutron diffraction with isotope substitution of Yb (172Yb, 174Yb, or natYb). Empirical potential structure refinement models were developed, which are in excellent agreement with the experiments. Coordination environments for Al–O are predominantly 4- and 5-coordinate, with a mean coordination of nAlO = 4.43(8), while Yb–O environments mostly range from 5- to 8-coordinate, with nYbO = 6.26(8). The cation–oxygen polyhedra are connected primarily by corner-sharing, with edge-sharing constituting up to ∼1/3 of the connectivity among polyhedra with Yb or higher-coordinated Al–O. Structurally, the –Al–O– network in molten Yb3Al5O12 appears conducive to glass formation: nOAl = 1.85(3), there are 1.86 AlOx–AlOx connections per Al atom (e.g., a mixture of Q3 and Q4 units), and the modal ring size is six cations. These characterize a network that is somewhat less constrained compared to SiO2 glass, yet Yb3Al5O12 cannot be quenched into crystal-free glass. Aluminum garnet compositions with larger rare earth cations do form glass, so these characterizations help reveal the structural characteristics corresponding to the limit of glass forming ability in rare earth aluminates.
-
Communications Earth & Environment 6(1) 148 2025年3月3日 査読有りAbstract Possible existence of dense iron-rich silicate melt layer above Mars’ core is important in understanding the nature and evolution of Mars. However, gravitational stability of iron-rich silicate melt in the Mars’ interior has not been well constrained, due to experimental difficulties in measuring density of iron-rich peridotitic melt. Here we report density measurements of iron-rich peridotitic melts up to 2465 K by using electrostatic levitation furnace at the International Space Station. Our experimentally obtained densities of iron-rich peridotitic melts are markedly higher than those calculated by first principles simulation, and are distinct from those estimated by extrapolating a density model for SiO2-rich basaltic melts. Our determined density model suggests that peridotitic melt with the Fe/(Mg+Fe) ratio more than 0.4-0.5 has higher density than that at the base of the Mars’ mantle, which indicates gravitational stability of the iron-rich peridotitic melt at the core-mantle boundary in Mars.
-
International Journal of Microgravity Science and Applicaiton 42(1) 420101 2025年1月 査読有り
-
ISIJ International 64(15) 2253-2261 2024年12月30日 査読有り
MISC
135-
可視化情報学会誌 = Journal of the Visualization Society of Japan 25(98) 149-149 2005年7月1日
-
日本物理学会講演概要集 60(1) 898-898 2005年3月4日
-
宇宙航空研究開発機構研究開発報告 4 1-7 2005年3月The use of an hybrid pressurized electrostatic-aerodynamic levitation furnace and procedures developed by the Japan Aerospace Exploration Agency overcame the contamination problems associated with the processing of ceramics under extreme temperature conditions. This made possible property measurements over wide temperature ranges that cover the superheated as well as the supercooled states. In this study, samples of various ceramics were levitated and their densities were found as a function of temperature by extracting the area from images of a UV backlit axi-symmetric sample of known mass. In addition, the work function of each molten material was estimated using the Richardson-Dushman equation.
-
宇宙航空研究開発機構研究開発報告 4 1-41 2005年3月The electrostatic levitation system, including its history and development, and techniques for non-contact thermophysical property measurements (density, surface tension, and viscosity) are reviewed. Thermophysical properties of refractory metals whose melting temperatures are over 2,000 K have been measured with an electrostatic levitator. The experimental results for vanadium, zirconium, niobium, molybdenum, rhodium, ruthenium,iridium, tantalum, rhenium, tungsten, and rhenium are presented. Comparison between theoretical calculations based on hard sphere model and measured data, as well as the necessity of microgravity conditions for this research are also discussed.
-
熱工学コンファレンス講演論文集 2004 371-372 2004年11月10日A ground-based electrostatic levitation equipment that can levitate a liquid drop under terrestrial condition is developed to understand the oscillatory motion up to large-amplitude. Levitation of water drops with a few millimeters in diameter has been achieved. We were able to control the oscillation mode whose number was m = 2 and the oscillatory motion up to large-amplitude, and induce drop rotation by imposing an acoustic torque. Preliminary results that demonstrate drop oscillation and amplitude dependence of frequency with rotating and non-rotating liquid drops are presented.
-
熱工学コンファレンス講演論文集 2004 369-370 2004年11月10日Thermophysical properties of molten refractory metals have been measured using an electrostatic levitation furnace. The developed levitation furnace could stably levitate molten samples at temperatures exceeding 3,000 degrees C. In addition, non-contact thermophysical properties measurement techniques have been implemented. Properties such as the density, the surface tension, and the viscosity have been measured over wide temperature ranges, including the undercooled region.
-
JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 21 55-55 2004年11月4日
-
JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 21 46-46 2004年11月4日
-
材料とプロセス : 日本鉄鋼協会講演論文集 = Current advances in materials and processes : report of the ISIJ meeting 17(1) 5-5 2004年3月1日
-
材料とプロセス : 日本鉄鋼協会講演論文集 = Current advances in materials and processes : report of the ISIJ meeting 17(1) 151-151 2004年3月1日
-
JASMA : Journal of the Japan Society of Microgravity Application 20 58-58 2003年10月23日
-
JASMA : Journal of the Japan Society of Microgravity Application 20 10-10 2003年10月23日
-
JASMA : Journal of the Japan Society of Microgravity Application 20(3) 183-191 2003年7月30日
-
JASMA : Journal of the Japan Society of Microgravity Application 20(3) 218-225 2003年7月30日
-
JOURNAL OF CRYSTAL GROWTH 249(3-4) 523-530 2003年3月
-
REVIEW OF SCIENTIFIC INSTRUMENTS 74(2) 1057-1063 2003年2月
-
REVIEW OF SCIENTIFIC INSTRUMENTS 74(2) 1147-1149 2003年2月
-
JASMA : Journal of the Japan Society of Microgravity Application 19 25-25 2002年10月17日
-
JASMA : Journal of the Japan Society of Microgravity Application 19 27-27 2002年10月17日
-
JASMA : Journal of the Japan Society of Microgravity Application 19 26-26 2002年10月17日
-
JASMA : Journal of the Japan Society of Microgravity Application 19(3) 205-205 2002年7月31日
-
JASMA : Journal of the Japan Society of Microgravity Application 19(3) 177-178 2002年7月31日
-
The Journal of space technology and science : a publication of Japanese Rocket Society 18(1) 8-16 2002年3月1日
-
JASMA : Journal of the Japan Society of Microgravity Application 18 56-56 2001年10月1日
-
JASMA : Journal of the Japan Society of Microgravity Application 18 91-91 2001年10月1日
-
JASMA : Journal of the Japan Society of Microgravity Application 18 90-90 2001年10月1日
-
JASMA : Journal of the Japan Society of Microgravity Application 18(3) 228-232 2001年7月31日
-
JASMA : Journal of the Japan Society of Microgravity Application 18(2) 106-115 2001年4月30日
-
JASMA : Journal of the Japan Society of Microgravity Application 17 98-99 2000年10月1日
-
JASMA : Journal of the Japan Society of Microgravity Application 16(4) 286-294 1999年10月31日
講演・口頭発表等
63-
13th Asian Microgravity Symposium AMS2022 2022年10月
-
13th Asian Microgravity Symposium AMS2022 2022年10月
所属学協会
5共同研究・競争的資金等の研究課題
13-
日本学術振興会 科学研究費助成事業 学術変革領域研究(A) 2020年11月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 学術変革領域研究(A) 2020年11月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2018年4月 - 2021年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2012年4月 - 2015年3月
-
日本学術振興会 科学研究費助成事業 特別研究員奨励費 2012年 - 2013年
● 専任大学名
1-
専任大学名総合研究大学院大学(SOKENDAI)
● 所属する所内委員会
4-
所内委員会名安全委員会
-
所内委員会名ISASニュース編集委員会
-
所内委員会名宇宙環境利用専門委員会
-
所内委員会名大気球専門委員会