Curriculum Vitaes

Toshiya Nakamura

  (中村 俊哉)

Profile Information

Affiliation
Institute of Space and Astronautical Science, Department of Space Flight Systems, Japan Aerospace Exploration Agency
Degree
Dr. Engineering(Mar, 1991, The University of Tokyo)

Researcher number
60237419
ORCID ID
 https://orcid.org/0000-0002-2403-5780
J-GLOBAL ID
202101015987830507
researchmap Member ID
R000025142

Papers

 55
  • Toshiya Nakamura
    Mathematics in Engineering, Science and Aerospace, 15(3) 889-901, Sep, 2024  Peer-reviewedLead authorCorresponding author
    The interfacial stress between fibers and matrix plays an important role in the durability and damage initiation of carbon fiber reinforced composites. In this study, thermoelastic analysis was performed on a plate containing randomly distributed multiple fibers. Complex stress functions were employed with a semi-numerical method to ensure displacement continuity along the fiber/matrix interface as a boundary condition. The statistical investigation reveals that the stress concentration due to the presence of multiple fibers increases as the fiber density increases, though its deviation decreases. A numerical case study was conducted to discuss the micromechanics of the inherent scatter of material strength. The stress-strength model with Monte-Carlo simulation demonstrated the fracture probability calculation. The uncertainty obtained is partially attributed to the micromechanical stress variation around the fibers.
  • Hiroki Kawabe, Yuichiro Aoki, Toshiya Nakamura
    AIAA Journal, 62(4) 1311-1317, Apr, 2024  Peer-reviewed
    The objective of this study is to develop a novel aircraft design approach using biomimetics as an alternative to traditional airframes. This approach is primarily inspired by the dragonfly wing, which possesses reinforcement structures composed of cross veins and longitudinal veins. These structures are assumed to regulate deformation and enhance stiffness, respectively. The cross veins were replicated using weighted centroidal Voronoi tessellation (WCVT) based on the out-of-plane displacement of the skin. In contrast, the longitudinal veins were replicated by extracting a centerline from the topology optimization (TO) results on the skin, achieved through image analysis techniques such as binarization and skeletonization. The longitudinal layout effectively reduces compliance by distributing internal loads, utilizing only essential reinforcements on the skin without increasing its mass. The WCVT layout significantly enhances the buckling resistance of the reinforced skin. As a result, the skin reinforced using both cross–longitudinal layouts from TO and WCVT exhibited a buckling load 2.7 times greater while maintaining a lower mass compared to conventional layouts.
  • Hiroshi Suemasu, Yuichiro Aoki, Hikaru Hoshi, Yasutomo Tateishi, Sunao Sugimoto, Toshiya Nakamura
    Composites Part A: Applied Science and Manufacturing, 172, Sep, 2023  Peer-reviewed
  • Hiroshi Suemasu, Yuichiro Aoki, Yasutomo Tateishi, Sunao Sugimoto, Toshiya Nakamura
    Journal of Composite Materials, 57(21) 3377-3391, Sep, 2023  Peer-reviewed
  • Hiroshi Suemasu, Yuichiro Aoki, Sunao Sugimoto, Toshiya Nakamura
    Composite Structures, 306, Feb 15, 2023  Peer-reviewed

Misc.

 28

Presentations

 190

Professional Memberships

 3

Research Projects

 3