宇宙飛翔工学研究系
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 助教
- ORCID ID
https://orcid.org/0000-0001-9888-7137
- J-GLOBAL ID
- 202201021399605332
- researchmap会員ID
- R000038113
研究キーワード
4経歴
4-
2025年8月 - 現在
-
2025年4月 - 現在
-
2022年4月 - 2025年3月
-
2020年4月 - 2022年3月
学歴
4-
2019年4月 - 2022年3月
-
2017年4月 - 2019年3月
-
2013年4月 - 2017年3月
-
2010年4月 - 2013年3月
受賞
8主要な論文
26-
Journal of Applied Physics 135(24) 2024年6月27日 査読有りIonic liquid electrospray thrusters represent an alternative propulsion method for spacecraft to conventional plasma propulsion because they do not require plasma generation, which significantly increases the thrust efficiency. The porous emitter thruster has the advantages of simple propellant feeding and multi-site emissions, which miniaturize the thruster size and increase thrust. However, the multi-scale nature, that is, nano- to micrometer-sized menisci on the millimeter-size porous needle tip, makes modeling multi-site emissions difficult, and direct observation is also challenging. This paper proposes a simple model for multi-site emissions, which assumes that the ionic conductivity or ion transport in the porous media determines the ion-emission current. The conductivity was evaluated by comparing the experimental and numerical data based on the model. The results suggest that the ionic conductivity of the porous emitter is suppressed by the ion–pore wall friction stress. Additionally, the model indicates that the emission area expansion on the porous emitter creates the unique curve shape of the current vs voltage characteristics for multi-site emissions.
-
Journal of Electric Propulsion 1(1) 2022年12月 査読有り招待有り筆頭著者責任著者Abstract In electron cyclotron resonance (ECR) thrusters, the plasma mode transition is a critical phenomenon because it determines the maximum thrust performance. In ECR ion thrusters, ionization generally occurs in the magnetic confinement region, where electrons are continuously heated by ECR and confined by magnetic mirrors. However, as the flow rate increases, ionization is also observed outside the magnetic confinement region, and this induces the plasma mode transition. In our previous work, two-photon absorption laser-induced fluorescence (TALIF) analysis revealed that the stepwise ionization from the metastable state plays an important role in the ionization process. However, the distribution of the stepwise ionization has not yet been revealed because of the long lifetime of the metastable state. In this study, this distribution was investigated using one experimental and two numerical approaches. First, TALIF was applied to two types of gas injection with clear differences in thrust performance and ground-state neutral density distribution. In the first simulation, the metastable state particle simulation was used to estimate the excitation rate distribution. In the second study, simulations of the electric field of microwaves were used to estimate the contribution of the stepwise ionization to the plasma density. The experimental and numerical results revealed that the stepwise ionization spreads outside the magnetic confinement region because of the diffusion of metastable particles, and this spread induces the plasma mode transition, explaining the difference between the two types of gas injection.
MISC
51講演・口頭発表等
1-
Plasma seminar @ Stanford University 2025年1月17日 招待有り
所属学協会
1共同研究・競争的資金等の研究課題
3-
日本学術振興会 科学研究費助成事業 2025年7月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2023年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2022年3月