研究者業績

城 宜嗣

シロ ヨシツグ  (Yoshitsugu Shiro)

基本情報

所属
兵庫県立大学 生命理学研究科 生命科学専攻 教授 (教授)
学位
工学博士

J-GLOBAL ID
200901033757880370
researchmap会員ID
5000072642

学歴

 2

論文

 295
  • Akio Horikawa, Rika Okubo, Naoki Hishikura, Riki Watanabe, Kaori Kurashima-Ito, Pooppadi Maxin Sayeesh, Kohsuke Inomata, Masaki Mishima, Hiroyasu Koteishi, Hitomi Sawai, Yoshitsugu Shiro, Teppei Ikeya, Yutaka Ito
    Biomolecular NMR Assignments 2025年2月1日  
    Abstract The symbiotic nitrogen-fixing bacterium Bradyrhizobium japonicum (B.japonicum) enables high soybean yields with little or no nitrogen fertiliser. A two component regulatory system comprising FixL, a histidine kinase with O2-sensing activity, and FixJ, a response regulator, controls the expression of genes involved in nitrogen fixation, such as fixK and nifA. Only under anaerobic conditions, the monophosphate group is transferred from FixL to the N-terminal receiver domain of FixJ (FixJN), which eventually promote the association of the C-terminal effector domain (FixJC) to the promoter regions of the nitrogen-fixation-related genes. Structural biological analyses carried out so far for rhizobial FixJ molecules have proposed a solution structure for FixJ that differs from the crystal structures, in which the two domains are extended. To understand the FixJ activation caused by phosphorylation of the N-terminal domain, which presumably regulates through the interactions between FixJN and FixJC, here we have performed backbone and sidechain resonance assignments of the unphosphorylated state of B. japonicum FixJ.
  • Chai C. Gopalasingam, Haruka Egami, Hideki Shigematsu, Masatora Sakaue, Kouki Fukumoto, Christoph Gerle, Masaki Yamamoto, Yoshitsugu Shiro, Kazumasa Muramoto, Takehiko Tosha
    2024年5月17日  
  • 佐藤 渚, 浦 敦人, 簗取 いずみ, 當舎 武彦, 城 宜嗣, 澤井 仁美
    日本生化学会大会プログラム・講演要旨集 96回 [2P-193] 2023年10月  
  • 阪口 智哉, 澤井 仁美, 城 宜嗣, 鍔木 基成, 當舎 武彦, 木村 哲就, 杉本 宏
    日本生化学会大会プログラム・講演要旨集 96回 [2P-656] 2023年10月  
  • Hanae Takeda, Kanji Shimba, Masaki Horitani, Tetsunari Kimura, Takashi Nomura, Minoru Kubo, Yoshitsugu Shiro, Takehiko Tosha
    The journal of physical chemistry. B 127(4) 846-854 2023年2月2日  
    Characterization of short-lived reaction intermediates is essential for elucidating the mechanism of the reaction catalyzed by metalloenzymes. Here, we demonstrated that the photolysis of a caged compound under cryogenic temperature followed by thermal annealing is an invaluable technique for trapping of short-lived reaction intermediates of metalloenzymes through the study of membrane-integrated nitric oxide reductase (NOR) that catalyzes reductive coupling of two NO molecules to N2O at its heme/nonheme FeB binuclear center. Although NO produced by the photolysis of caged NO did not react with NOR under cryogenic temperature, annealing to ∼160 K allowed NO to diffuse and react with NOR, which was evident from the appearance of EPR signals assignable to the S = 3/2 state. This indicates that the nonheme FeB-NO species can be trapped as the intermediate. Time-resolved IR spectroscopy with the use of the photolysis of caged NO as a reaction trigger showed that the intermediate formed at 10 μs gave the NO stretching frequency at 1683 cm-1 typical of nonheme Fe-NO, confirming that the combination of the cryo-photolysis of caged NO and annealing enabled us to trap the reaction intermediate. Thus, the cryo-photolysis of the caged compound has great potential for the characterization of short-lived reaction intermediates.
  • Yuya Nishida, Sachiko Yanagisawa, Rikuri Morita, Hideki Shigematsu, Kyoko Shinzawa-Itoh, Hitomi Yuki, Satoshi Ogasawara, Ken Shimuta, Takashi Iwamoto, Chisa Nakabayashi, Waka Matsumura, Hisakazu Kato, Chai Gopalasingam, Takemasa Nagao, Tasneem Qaqorh, Yusuke Takahashi, Satoru Yamazaki, Katsumasa Kamiya, Ryuhei Harada, Nobuhiro Mizuno, Hideyuki Takahashi, Yukihiro Akeda, Makoto Ohnishi, Yoshikazu Ishii, Takashi Kumasaka, Takeshi Murata, Kazumasa Muramoto, Takehiko Tosha, Yoshitsugu Shiro, Teruki Honma, Yasuteru Shigeta, Minoru Kubo, Seiji Takashima, Yasunori Shintani
    Nature Communications 13(1) 7591 2022年12月8日  査読有り
    Abstract Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.
  • 浦 敦人, 簗取 いずみ, 城 宜嗣, 澤井 仁美
    日本生化学会大会プログラム・講演要旨集 95回 2T05a-05 2022年11月  
  • 浦 敦人, 簗取 いずみ, 城 宜嗣, 澤井 仁美
    日本生化学会大会プログラム・講演要旨集 95回 2T05a-05 2022年11月  
  • Hiro Nakamura, Tamao Hisano, Md Mahfuzur Rahman, Takehiko Tosha, Mikako Shirouzu, Yoshitsugu Shiro
    Proceedings of the National Academy of Sciences of the United States of America 119(27) e2123385119 2022年7月5日  
    Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.
  • Vu Ngoc Hieu, Le Thi Thanh Thuy, Hoang Hai, Ninh Quoc Dat, Dinh Viet Hoang, Ngo Vinh Hanh, Dong Minh Phuong, Truong Huu Hoang, Hitomi Sawai, Yoshitsugu Shiro, Misako Sato-Matsubara, Daisuke Oikawa, Fuminori Tokunaga, Katsutoshi Yoshizato, Norifumi Kawada
    Redox Biology 52 102286-102286 2022年6月  
  • Megumi Nishinaga, Hiroshi Sugimoto, Yudai Nishitani, Seina Nagai, Satoru Nagatoishi, Norifumi Muraki, Takehiko Tosha, Kouhei Tsumoto, Shigetoshi Aono, Yoshitsugu Shiro, Hitomi Sawai
    Communications Biology 4(1) 2021年12月  
    <title>Abstract</title>Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring <italic>b</italic>-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from <italic>Streptococcus agalactiae</italic>, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a &gt;20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.
  • 高原 教代, 杉本 宏, 神戸 大朋, 城 宜嗣, 澤井 仁美
    日本生化学会大会プログラム・講演要旨集 94回 [P-705] 2021年11月  
  • Takeo Yamawaki, Misao Mizuno, Haruto Ishikawa, Kazuhiro Takemura, Akio Kitao, Yoshitsugu Shiro, Yasuhisa Mizutani
    The journal of physical chemistry. B 2021年6月16日  
    Signal transduction proteins perceive external stimuli in their sensor module and regulate the biological activities of the effector module, allowing cellular adaptation in response to environmental changes. FixL is a dimeric heme protein kinase that senses the oxygen level in plant root nodules to regulate the transcription of nitrogen fixation genes via the phosphorylation of its cognate transcriptional activator. Dissociation of oxygen from the heme induces conformational changes in the protein, converting it from the inactive form for phosphorylation to the active form. However, how FixL undergoes conformational change to regulate kinase activity upon oxygen dissociation remains poorly understood. Here we report time-resolved ultraviolet resonance Raman spectra showing conformational changes for FixL from Sinorhizobium meliloti. We observed spectral changes with a time constant of about 3 μs, which were oxygen-specific. Furthermore, we found that the conformational changes in the sensor and kinase domains are coupled, enabling allosteric control of kinase activity. Our results demonstrate that concerted structural changes on the microsecond time scale serve as the regulatory switch in FixL.
  • Takashi Nomura, Tetsunari Kimura, Yusuke Kanematsu, Daichi Yamada, Keitaro Yamashita, Kunio Hirata, Go Ueno, Hironori Murakami, Tamao Hisano, Raika Yamagiwa, Hanae Takeda, Chai Gopalasingam, Ryota Kousaka, Sachiko Yanagisawa, Osami Shoji, Takashi Kumasaka, Masaki Yamamoto, Yu Takano, Hiroshi Sugimoto, Takehiko Tosha, Minoru Kubo, Yoshitsugu Shiro
    Proceedings of the National Academy of Sciences 118(21) e2101481118-e2101481118 2021年5月25日  
    Nitric oxide (NO) reductase from the fungus <italic>Fusarium oxysporum</italic> is a P450-type enzyme (P450nor) that catalyzes the reduction of NO to nitrous oxide (N2O) in the global nitrogen cycle. In this enzymatic reaction, the heme-bound NO is activated by the direct hydride transfer from NADH to generate a short-lived intermediate (<italic><underline>I</underline></italic>), a key state to promote N–N bond formation and N–O bond cleavage. This study applied time-resolved (TR) techniques in conjunction with photolabile-caged NO to gain direct experimental results for the characterization of the coordination and electronic structures of <italic><underline>I</underline></italic>. TR freeze-trap crystallography using an X-ray free electron laser (XFEL) reveals highly bent Fe–NO coordination in <italic><underline>I</underline></italic>, with an elongated Fe–NO bond length (Fe–NO = 1.91 Å, Fe–N–O = 138°) in the absence of NAD+. TR-infrared (IR) spectroscopy detects the formation of <italic><underline>I</underline></italic> with an N–O stretching frequency of 1,290 cm−1 upon hydride transfer from NADH to the Fe3+–NO enzyme via the dissociation of NAD+ from a transient state, with an N–O stretching of 1,330 cm−1 and a lifetime of ca. 16 ms. Quantum mechanics/molecular mechanics calculations, based on these crystallographic and IR spectroscopic results, demonstrate that the electronic structure of <italic><underline>I</underline></italic> is characterized by a singly protonated Fe3+–NHO•− radical. The current findings provide conclusive evidence for the N2O generation mechanism via a radical–radical coupling of the heme nitroxyl complex with the second NO molecule.
  • Hanna Kwon, Jaswir Basran, Chinar Pathak, Mahdi Hussain, Samuel L Freeman, Alistair J Fielding, Anna J Bailey, Natalia Stefanou, Hazel A Sparkes, Takehiko Tosha, Keitaro Yamashita, Kunio Hirata, Hironori Murakami, Go Ueno, Hideo Ago, Kensuke Tono, Masaki Yamamoto, Hitomi Sawai, Yoshitsugu Shiro, Hiroshi Sugimoto, Emma Raven, Peter C.E Moody
    Angewandte Chemie International Edition 2021年4月7日  
  • Masaru Kato, Yuya Masuda, Narumi Yoshida, Takehiko Tosha, Yoshitsugu Shiro, Ichizo Yagi
    Electrochimica Acta 373 137888-137888 2021年3月  査読有り
  • Takehiko Tosha, Raika Yamagiwa, Hitomi Sawai, Yoshitsugu Shiro
    Chemistry Letters 50(2) 280-288 2021年2月5日  査読有り招待有り最終著者責任著者
  • Kuniaki Mukai, Hiroshi Sugimoto, Katsumasa Kamiya, Reiko Suzuki, Tomomi Matsuura, Takako Hishiki, Hideo Shimada, Yoshitsugu Shiro, Makoto Suematsu, Norio Kagawa
    Current research in structural biology 3 192-205 2021年  
    Human cytochromes P45011β (CYP11B1) and P450aldo (CYP11B2) are monooxygenases that synthesize cortisol through steroid 11β-hydroxylation and aldosterone through a three-step process comprising 11β-hydroxylation and two 18-hydroxylations, respectively. CYP11B1 also catalyzes 18-monohydroxylation and 11β,18-dihydroxylation. To study the molecular basis of such catalytic divergence of the two enzymes, we examined a CYP11B1 mutant (Mt-CYP11B1) with amino acid replacements on the distal surface by determining the catalytic activities and crystal structure in the metyrapone-bound form at 1.4-Å resolution. Mt-CY11B1 retained both 11β-hydroxylase and 18-hydroxylase activities of the wild type (Wt-CYP11B1) but lacked 11β,18-dihydroxylase activity. Comparisons of the crystal structure of Mt-CYP11B1 to those of Wt-CYP11B1 and CYP11B2 that were already reported show that the mutation reduced the innermost space putatively surrounding the C3 side of substrate 11-deoxycorticosterone (DOC) bound to Wt-CYP11B1, while the corresponding space in CYP11B2 is enlarged markedly and accessible to bulk water through a channel. Molecular dynamics simulations of their DOC-bound forms supported the above findings and revealed that the enlarged space of CYP11B2 had a hydrogen bonding network involving water molecules that position DOC. Thus, upon positioning 11β-hydroxysteroid for 18-hydroxylation in their substrate-binding sites, steric hindrance could occur more strongly in Mt-CYP11B1 than in Wt-CYP11B1 but less in CYP11B2. Our investigation employing Mt-CYP11B1 sheds light on the divergence in structure and function between CYP11B1 and CYP11B2 and suggests that CYP11B1 with spatially-restricted substrate-binding site serves as 11β-hydroxylase, while CYP11B2 with spatially-extended substrate-binding site successively processes additional 18-hydroxylations to produce aldosterone.
  • Joshua Kyle Stanfield, Keita Omura, Ayaka Matsumoto, Chie Kasai, Hiroshi Sugimoto, Yoshitsugu Shiro, Yoshihito Watanabe, Osami Shoji
    Angewandte Chemie 132(19) 7681-7689 2020年5月4日  
  • Joshua Kyle Stanfield, Keita Omura, Ayaka Matsumoto, Chie Kasai, Hiroshi Sugimoto, Yoshitsugu Shiro, Yoshihito Watanabe, Osami Shoji
    Angewandte Chemie International Edition 59(19) 7611-7618 2020年5月4日  
  • M. Arif M. Jamali, Chai C. Gopalasingam, Rachel M. Johnson, Takehiko Tosha, Kazumasa Muramoto, Stephen P. Muench, Svetlana V. Antonyuk, Yoshitsugu Shiro, Samar S. Hasnain
    IUCrJ 7(3) 404-415 2020年5月1日  査読有り
    <italic>Neisseria meningitidis</italic> is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from <italic>N. meningitidis</italic> (<italic>Nm</italic>qNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of <italic>Nm</italic>qNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen <italic>Alcaligenes</italic> (<italic>Achromobacter</italic>) <italic>xylosoxidans</italic>, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of <italic>Nm</italic>qNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly <italic>in crystallo</italic> and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme.
  • Hanae Takeda, Tetsunari Kimura, Takashi Nomura, Masaki Horitani, Azusa Yokota, Akiko Matsubayashi, Shoko Ishii, Yoshitsugu Shiro, Minoru Kubo, Takehiko Tosha
    Bulletin of the Chemical Society of Japan 2020年4月10日  査読有り
  • 西永 惠, 長井 聖奈, 村木 則文, 青野 重利, 杉本 宏, 城 宜嗣, 澤井 仁美
    日本生化学会大会プログラム・講演要旨集 92回 [1T13a-05] 2019年9月  
  • Sachiko Yanagisawa, Kure’e Kayama, Masayuki Hara, Hiroshi Sugimoto, Yoshitsugu Shiro, Takashi Ogura
    Biophysical Journal 117(4) 706-716 2019年8月  査読有り
  • Shisaka Yuma, Iwai Yusuke, Yamada Shiho, Uehara Hiromu, Tosha Takehiko, Sugimoto Hiroshi, Shiro Yoshitsugu, Stanfield Joshua K, Ogawa Kazuya, Watanabe Yoshihito, Shoji Osami
    ACS CHEMICAL BIOLOGY 14(7) 1637-1642-1642 2019年7月9日  査読有り
  • Koichi Tamura, Hiroshi Sugimoto, Yoshitsugu Shiro, Yuji Sugita
    The Journal of Physical Chemistry B 123(34) 7270-7281 2019年7月  査読有り
  • Sakakibara, E, Shisaka, Y, Onoda, H, Koga, D, Xu, N, Ono, T, Hisaeda, Y, Sugimoto, H, Shiro, Y, Watanabe, Y, Shoji, O
    RSC Advances 9(32) 18697-18702 2019年6月  査読有り
  • Yoshitani, K, Ishii, E, Taniguchi, K, Sugimoto, H, Shiro, Y, Akiyama, Y, Kato, A, Utsumi, R, Eguchi, Y
    Biosci Biotechnol Biochem 83(4) 684-694 2019年4月  査読有り
  • Takehiko Tosha, Yoshitsugu Shiro
    RSC Metallobiology 2019-(13) 334-350 2019年  
  • Nathalie Gonska, David Young, Riki Yuki, Takuya Okamoto, Tamao Hisano, Svetlana Antonyuk, S. Samar Hasnain, Kazumasa Muramoto, Yoshitsugu Shiro, Takehiko Tosha, Pia Ädelroth
    Scientific Reports 8(1) 3637 2018年12月  査読有り
  • 西永 惠, 長井 聖奈, 杉本 宏, 村木 則文, 青野 重利, 城 宜嗣, 澤井 仁美
    日本生化学会大会プログラム・講演要旨集 91回 [1T11e-090)] 2018年9月  
  • 倉橋 拓也, 山際 来佳, 新井 博之, 澤井 仁美, 當舎 武彦, 城 宜嗣
    日本生化学会大会プログラム・講演要旨集 91回 [3P-127] 2018年9月  
  • Kato M, Nakagawa S, Tosha T, Shiro Y, Masuda Y, Nakata K, Yagi I
    The journal of physical chemistry letters 9(17) 5196-5200 2018年9月  査読有り
  • Raika Yamagiwa, Takuya Kurahashi, Mariko Takeda, Mayuho Adachi, Hiro Nakamura, Hiroyuki Arai, Yoshitsugu Shiro, Hitomi Sawai, Takehiko Tosha
    Biochimica et Biophysica Acta - Bioenergetics 1859(5) 333-341 2018年5月1日  査読有り
  • Omura, K, Aiba, Y, Onoda, H, Stanfield, J. K, Ariyasu, S, Sugimoto, H, Shiro, Y, Shoji, O, Watanabe, Y
    Chem. Commun. (Camb) 54(57) 7892-7895 2018年5月  査読有り
  • R. Makino, Y. Obata, M. Tsubaki, T. Iizuka, Y. Hamajima, Y. Kato-Yamada, K. Mashima, Y. Shiro
    Biochemistry 57(10) 1620-1631 2018年3月13日  査読有り
  • 杉本 宏, 城 宜嗣
    生物物理 335 5-8 2018年2月  査読有り
  • Hanai Shumpei, Tsujino Hirofumi, Yamashita Taku, Torii Ryo, Sawai Hitomi, Shiro Yoshitsugu, Oohora Koji, Hayashi Takashi, Uno Tadayuki
    JOURNAL OF INORGANIC BIOCHEMISTRY 179 1-9 2018年2月  査読有り
  • M. Ganasen, H. Togashi, H. Takeda, S. Nagatoishi, K. Tsumoto, T. Urano, S. J. Takayama, G. A. Mauk, Y. Shiro, H. Sawai, H. Sugimoto
    Commun. Biol. 1 120 2018年  査読有り
  • G. S. A. Wright, A. Saeki, T. Hikima, Y. Nishizono, T. Hisano, M. Yamamoto, S. V. Antonyuk, S. S. Hasnain, Y. Shiro, H. Sawai
    Sci. Signal. 11 aaq0825 2018年  査読有り
  • Kaori Yasuda, Hiroshi Sugimoto, Keiko Hayashi, Teisuke Takita, Kiyoshi Yasukawa, Miho Ohta, Masaki Kamakura, Shinichi Ikushiro, Yoshitsugu Shiro, Toshiyuki Sakaki
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 1866(1) 23-31 2018年1月  査読有り
  • Sawai H, Shiro Y
    RSC Metallobiology 2018-January(11) 47-83 2018年  査読有り
  • Wright G.S.A, Saeki A, Hikima T, Nishizono Y, Hisano T, Kamaya M, Nukina K, Nishitani H, Nakamura H, Yamamoto M, Antonyuk S.V, Hasnain S.S, Shiro Y, Sawai H
    Science Signaling 11(525) 2018年  査読有り
  • Ganasen M, Togashi H, Takeda H, Asakura H, Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, Yuan X, Hamza I, Mauk AG, Shiro Y, Sugimoto H, Sawai H
    Communications biology 1(1) 120 2018年  査読有り
  • Furukawa Y, Lim C, Tosha T, Yoshida K, Hagai T, Akiyama S, Watanabe S, Nakagome K, Shiro Y
    PloS one 13(9) e0204355 2018年  査読有り
  • Youichi Naoe, Nozomi Nakamura, Md Mahfuzur Rahman, Takehiko Tosha, Satoru Nagatoishi, Kouhei Tsumoto, Yoshitsugu Shiro, Hiroshi Sugimoto
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 85(12) 2217-2230 2017年12月  査読有り
  • 西永 惠, 杉本 宏, 青野 重利, 城 宜嗣, 澤井 仁美
    生命科学系学会合同年次大会 2017年度 [4LT15-0625)] 2017年12月  
  • Oohora, K, Meichin, H, Kihira, Y, Sugimoto, H, Shiro, Y, Hayashi, T
    J. Am. Chem. Soc. 139(51) 18460-18463 2017年12月  査読有り
  • Takehiko Tosha, Takashi Nomura, Takuma Nishida, Naoya Saeki, Kouta Okubayashi, Raika Yamagiwa, Michihiro Sugahara, Takanori Nakane, Keitaro Yamashita, Kunio Hirata, Go Ueno, Tetsunari Kimura, Tamao Hisano, Kazumasa Muramoto, Hitomi Sawai, Hanae Takeda, Eiichi Mizohata, Ayumi Yamashita, Yusuke Kanematsu, Yu Takano, Eriko Nango, Rie Tanaka, Osamu Nureki, Osami Shoji, Yuka Ikemoto, Hironori Murakami, Shigeki Owada, Kensuke Tono, Makina Yabashi, Masaki Yamamoto, Hideo Ago, So Iwata, Hiroshi Sugimoto, Yoshitsugu Shiro, Minoru Kubo
    NATURE COMMUNICATIONS 8 1585 2017年11月  査読有り

MISC

 192

共同研究・競争的資金等の研究課題

 36