Curriculum Vitaes
Profile Information
- Affiliation
- Clinical Professor, School of Medicine Department of Diagnostic Radiology, Fujita Health University
- Degree
- Bachelor of Medicine(Mar, 1994, Kobe University School of Medicine)Doctor of Medicine(Sep, 2000, Kobe University Graduate School of Medicine)
- J-GLOBAL ID
- 201301059890537338
- researchmap Member ID
- 7000004230
Research Areas
1Research History
7-
Jan, 2025 - Present
-
Apr, 2009 - Mar, 2020
-
Oct, 2008 - Mar, 2009
Education
2-
Apr, 1995 - Sep, 2000
-
Apr, 1988 - Mar, 1994
Awards
11Papers
162-
Radiology, 191740-191740, May 26, 2020 Peer-reviewedBackground Deep learning may help to improve computer-aided detection of volume (CADv) measurement of pulmonary nodules at chest CT. Purpose To determine the efficacy of a deep learning method for improving CADv for measuring the solid and ground-glass opacity (GGO) volumes of a nodule, doubling time (DT), and the change in volume at chest CT. Materials and Methods From January 2014 to December 2016, patients with pulmonary nodules at CT were retrospectively reviewed. CADv without and with a convolutional neural network (CNN) automatically determined total nodule volume change per day and DT. Area under the curves (AUCs) on a per-nodule basis and diagnostic accuracy on a per-patient basis were compared among all indexes from CADv with and without CNN for differentiating benign from malignant nodules. Results The CNN training set was 294 nodules in 217 patients, the validation set was 41 nodules in 32 validation patients, and the test set was 290 nodules in 188 patients. A total of 170 patients had 290 nodules (mean size ± standard deviation, 11 mm ± 5; range, 4-29 mm) diagnosed as 132 malignant nodules and 158 benign nodules. There were 132 solid nodules (46%), 106 part-solid nodules (36%), and 52 ground-glass nodules (18%). The test set results showed that the diagnostic performance of the CNN with CADv for total nodule volume change per day was larger than DT of CADv with CNN (AUC, 0.94 [95% confidence interval {CI}: 0.90, 0.96] vs 0.67 [95% CI: 0.60, 0.74]; P < .001) and CADv without CNN (total nodule volume change per day: AUC, 0.69 [95% CI: 0.62, 0.75]; P < .001; DT: AUC, 0.58 [95% CI: 0.51, 0.65]; P < .001). The accuracy of total nodule volume change per day of CADv with CNN was significantly higher than that of CADv without CNN (P < .001) and DT of both methods (P < .001). Conclusion Convolutional neural network is useful for improving accuracy of computer-aided detection of volume measurement and nodule differentiation capability at CT for patients with pulmonary nodules. © RSNA, 2020 Online supplemental material is available for this article.
-
Acta radiologica (Stockholm, Sweden : 1987), 60(12) 1619-1628, Dec, 2019
Misc.
73-
癌と化学療法, 28(11) 1708-1711, Oct, 200166歳男.右側腹部痛を主訴としC型肝炎,肝細胞癌(HCC),下大静脈腫瘍塞栓を指摘された.血液生化学所見では軽度肝機能障害を認め,腫瘍マーカーではAFP,PIVKA-IIの上昇を認めた.腹部CT所見では肝右葉から内側区域に巨大な塊状型HCCを認め,門脈右枝,右肝静脈から下大静脈に腫瘍塞栓を認めた.以上より,下大静脈腫瘍塞栓合併進行HCCと診断した.腫瘍塞栓による肺塞栓の予防目的に,右房合流部にtemporary IVC filter留置を行い,右肝動脈よりTAEを施行した.TAE1週間後のfilter交換時に腫瘍塞栓が遊離し,一部が抜去したfilterに捕捉されたが,組織はghost cellであった.1ヵ月後のCT所見では腫瘍の著明な縮小,下大静脈腫瘍塞栓の消失が得られた.13ヵ月経過した現在,肺塞栓・肺転移はみられず経過良好である
-
日本医学放射線学会雑誌, 61(2) S231-S232, Feb, 2001
-
IVR: Interventional Radiology, 15(3) 373-373, Jul, 2000
-
臨床放射線, 45(5) 640-643, May, 200050歳男,好中球減少性腸炎例.本症は致死率が高い重篤な疾患であり,臨床所見ならびに画像による早期の診断と手術適応の決定が重要である.特にCTは穿孔や膿瘍形成を的確に診断できる有用なmodalityと考えられる.又,保存的治療が選択された場合には,腹部超音波が腸管壁肥厚の経過観察において有用と考えられる
-
IVR: Interventional Radiology, 15(2) 271-271, Apr, 2000
-
日本医学放射線学会雑誌, 60(2) S206-S206, Feb, 2000
-
IVR: Interventional Radiology, 15(1) 29-34, Jan, 2000
Books and Other Publications
10Presentations
396-
第26回日本CT検診学会学術集会, Feb, 2019, 日本CT検診学会
-
31st Annual Meeting of European Congress of Radiology (ECR 2019), Feb, 2019, European Society of Radioogy
-
31st Annual Meeting of European Congress of Radiology (ECR 2019), Feb, 2019, European Society of Radioogy
-
31st Annual Meeting of European Congress of Radiology (ECR 2019), Feb, 2019, European Society of Radioogy
-
31st Annual Meeting of European Congress of Radiology (ECR 2019), Feb, 2019, European Society of Radioogy
Research Projects
11-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2025 - Mar, 2028
-
学術研究助成基金助成金/基盤研究(C), Apr, 2018 - Mar, 2021
-
学術研究助成基金助成金/基盤研究(C), Apr, 2015 - Mar, 2018
-
学術研究助成基金助成金/基盤研究(C), Apr, 2014 - Mar, 2017
-
科学研究費補助金/基盤研究(C), Apr, 2012 - Mar, 2015