Dept. of Space Astronomy and Astrophysics
Profile Information
- Affiliation
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- Degree
- Ph.D.(Jun, 2017, University of California, San Diego)
- Researcher number
- 40867032
- ORCID ID
https://orcid.org/0000-0003-0041-6447
- J-GLOBAL ID
- 201901016586407138
- researchmap Member ID
- B000373123
Research Interests
3Research History
2Education
2-
Sep, 2010 - Jun, 2017
-
Aug, 2005 - May, 2010
Awards
2-
Nov, 2013
Papers
70-
Journal of Cosmology and Astroparticle Physics, 2024(12) 036-036, Dec 1, 2024 Peer-reviewedAbstract Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial B-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active suppression of systematic effects are crucial. We investigate the effect of changing the parameters of the scanning strategy on the in-flight calibration effectiveness, the suppression of the systematic effects themselves, and the ability to distinguish systematic effects by null-tests. Next-generation missions such as LiteBIRD, modulated by a Half-Wave Plate (HWP), will be able to observe polarisation using a single detector, eliminating the need to combine several detectors to measure polarisation, as done in many previous experiments and hence avoiding the consequent systematic effects. While the HWP is expected to suppress many systematic effects, some of them will remain. We use an analytical approach to comprehensively address the mitigation of these systematic effects and identify the characteristics of scanning strategies that are the most effective for implementing a variety of calibration strategies in the multi-dimensional space of common spacecraft scan parameters. We verify that LiteBIRD's standard configuration yields good performance on the metrics we studied. We also present Falcons.jl, a fast spacecraft scanning simulator that we developed to investigate this scanning parameter space.
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 82-82, Aug 23, 2024
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 207-207, Aug 23, 2024
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, 124-124, Aug 16, 2024
-
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, 120-120, Aug 16, 2024
Misc.
39-
宇宙科学技術連合講演会講演集(CD-ROM), 67th, 2023
Presentations
58-
CMB-Inflate/C2C/IPNS/QUP workshop, Jan 29, 2025
Research Projects
2-
Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Apr, 2020 - Mar, 2023
-
Search for primordial gravitational wave using polarization of cosmic microwave background radiationGrants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Oct, 2017 - Mar, 2020