Curriculum Vitaes

Takahiro Ito

  (伊藤 琢博)

Profile Information

Affiliation
Assistant Professor, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

Researcher number
30872444
ORCID ID
 https://orcid.org/0000-0003-1491-1940
J-GLOBAL ID
202001000326595612
researchmap Member ID
R000000445

Major Committee Memberships

 4

Major Awards

 17

Major Papers

 31
  • Takahiro Ito, Kiwamu Izumi, Isao Kawano, Ikkoh Funaki, Shuichi Sato, Tomotada Akutsu, Kentaro Komori, Mitsuru Musha, Yuta Michimura, Satoshi Satoh, Takuya Iwaki, Kentaro Yokota, Kenta Goto, Katsumi Furukawa, Taro Matsuo, Toshihiro Tsuzuki, Katsuhiko Yamada, Takahiro Sasaki, Taisei Nishishita, Yuki Matsumoto, Chikako Hirose, Wataru Torii, Satoshi Ikari, Koji Nagano, Masaki Ando, Seiji Kawamura, Hidehiro Kaneda, Shinsuke Takeuchi, Shinichiro Sakai
    Publications of the Astronomical Society of Japan, 77(5) 1080-1089, Oct, 2025  Peer-reviewed
    Abstract We propose a mission concept, called the space interferometer laboratory voyaging towards innovative applications (SILVIA), designed to demonstrate ultra-precision formation flying between three spacecraft separated by 100 m. SILVIA aims to achieve submicrometer precision in relative distance control by integrating spacecraft sensors, laser interferometry, low-thrust, and low-noise micro-propulsion for real-time measurement and control of distances and relative orientations between spacecraft. A 100 m scale mission in a near-circular low Earth orbit has been identified as an ideal, cost-effective setting for demonstrating SILVIA, as this configuration maintains a good balance between small relative perturbations and low risk of collision. This mission will fill the current technology gap towards future missions, including gravitational wave observatories such as the decihertz interferometer gravitational wave observatory (DECIGO), designed to detect the primordial gravitational-wave background, and high-contrast nulling infrared interferometers such as the large interferometer for exoplanets (LIFE), designed for direct imaging of thermal emissions from nearby terrestrial planet candidates. The mission concept and its key technologies are outlined, paving the way for the next generation of high-precision space-based observatories.
  • Takahiro Ito
    Acta Astronautica, 235 130-140, Oct, 2025  Peer-reviewedLead authorCorresponding author
    Precise satellite formation flying is a promising technology that enables unprecedented astronomical observations. For comprehensive astronomical missions, preliminary small satellite missions in low Earth orbit (LEO) have been proposed. However, various perturbation sources in LEO can disturb rigid and precise formation control. This study proposes an approach that combines feedforward and feedback controls to attain precise formation flying in LEO. The developed feedforward control can compensate for major gravitational perturbations, predicted from the absolute position and velocity of spacecraft. In addition, the feedback control can address uncertain and unmodeled perturbations. Consequently, the hybrid approach can yield a smaller tracking error than feedback control alone. This novel approach is reliable and robust against environmental uncertainties—including atmospheric density, high-order Earth gravitational potentials, and third-body gravity—and systematic uncertainties—including atmospheric and solar radiation coefficients and thrust errors of spacecraft. Indeed, closed-loop control simulations of a linear astronomical interferometer under such uncertainties reveal a significant reduction in tracking error and feedback controller load using feedforward control, potentially making precise and reliable formation flying in LEO much achievable.
  • Takahiro Ito, Satoshi Ueda, Kentaro Yokota, Shin-ichiro Sakai, Shujiro Sawai, Mikihiro Sugita, Yusuke Shibasaki, Yoshihiro Mukumoto, Daisuke Watabe, Seiichi Shimizu
    Journal of Guidance, Control, and Dynamics, 48(6) 1298-1313, Jun, 2025  Peer-reviewedLead authorCorresponding author
  • Takahiro Ito
    Astronomy & Astrophysics, 682(A38), Feb, 2024  Peer-reviewedLead authorCorresponding author
  • Takahiro Ito, Shin-ichiro Sakai
    Journal of Guidance, Control, and Dynamics, 46(4) 695-708, Apr, 2023  Peer-reviewedLead authorCorresponding author

Misc.

 80

Major Presentations

 38

Teaching Experience

 2

Research Projects

 2

Industrial Property Rights

 2

Major Social Activities

 24

Major Media Coverage

 4
  • Universe Today, Apr 16, 2025 Internet
    Interferometry connects multiple telescopes into a single large telescope with higher resolution. It works on Earth, but an interferometer space telescope has always been a dream, with NASA's Terrestrial Planet Finder getting canceled decades ago. There's too much technical risk. A new research paper proposes a scaled-down, ultraprecision formation flying mission called SILVIA, which would test the key technology to enable future interferometer space telescopes.
  • Universe Today, Nov 23, 2023 Internet