Curriculum Vitaes
Profile Information
- Affiliation
- Professor, School of Science and Technology, Meiji UniversityInstitute of Space and Astronautical Science, Japan Aerospace Exploration Agency
- J-GLOBAL ID
- 200901071014528345
- researchmap Member ID
- 1000174751
- External link
2014年4月1日〜2017年9月30日
・JAXA宇宙科学研究所 プログラムディレクタ
2018年4月1日〜2020年3月31日
・JAXA宇宙科学研究所 研究総主幹
・JAXA宇宙探査イノベーションハブ ハブ長
・はやぶさ2プロジェクト スポークスパーソン
2020年4月1日〜2023年5月31日
・JAXA統括チーフエンジニア
2024年4月より,明治大学理工学部特任教授
宇宙航空研究開発機構名誉教授(2025年4月1日)
日本ロボット学会フェロー(2022年9月7日)
宇宙探査ロボットの研究開発と実用化への取り組みならびに学会運営への貢献
Research Interests
9Research Areas
5Research History
4-
Apr, 2024 - Present
-
Oct, 2003 - Mar, 2024
-
Apr, 1993 - Sep, 2003
-
Apr, 1991 - Mar, 1993
Committee Memberships
6-
Oct, 2022 - Present
-
Sep, 2021 - Present
-
Apr, 2003 - Mar, 2025
-
Apr, 2020 - Sep, 2022
-
Apr, 2017 - Mar, 2019
Awards
12Papers
133-
Journal of the Robotics Society of Japan, 42(9) 908-911, Nov, 2024 Peer-reviewedCorresponding author
-
Journal of Evolving Space Activities, Vol.1(Article ID:6), Jan, 2023 Peer-reviewedLast author
-
Journal of the Robotics Society of Japan, 40(5) 441-444, May, 2022 Peer-reviewedLast author
-
ROBOMECH Journal, 9(1), Jan, 2022 Peer-reviewedLast authorCorresponding author<title>Abstract</title>In this paper, a novel terrain traversability prediction method is proposed for new operation environments. When an off-road vehicle is operated on rough terrains or slopes made up of unconsolidated materials, it is crucial to accurately predict terrain traversability to ensure efficient operations and avoid critical mobility risks. However, the prediction of traversability in new environments is challenging, especially for possibly risky terrains, because the traverse data available for such terrains is either limited or non-existent. To address this limitation, this study proposes an adaptive terrain traversability prediction method based on multi-source transfer Gaussian process regression. The proposed method utilizes the limited data available on low-risk terrains of the target environment to enhance the prediction accuracy on untraversed, possibly higher-risk terrains by leveraging past traverse experiences on multiple types of terrain surface. The effectiveness of the proposed method is demonstrated in scenarios where vehicle slippage and power consumption are predicted using a dataset of various terrain surfaces and geometries. In addition to predicting terrain traversability as continuous values, the utility of the proposed method is demonstrated in binary risk level classification of yet to be traversed steep terrains from limited data on safer terrains.
-
ROBOMECH Journal, 9(1), Jan, 2022 Peer-reviewedLast authorCorresponding author<title>Abstract</title>Hopping robots, called hoppers, are expected to move on rough terrains, such as disaster areas or planetary environments. The uncertainties of the hopping locomotion in such environments are high, making path planning algorithms essential to traverse these uncertain environments. Planetary surface exploration requires to generate a path which minimises the risk of failure and maximises the information around the hopper. This paper newly proposes a hopping path planning algorithm for rough terrains locomotion. The proposed algorithm takes into account the motion uncertainties using Markov decision processes (MDPs), and generates paths corresponding to the terrain conditions, or the mission requirements, or both. The simulation results show the effectiveness of the proposed route planning scheme in three cases as the rough terrain, sandy and hard ground environment, and non-smooth borders.
Misc.
65-
IEEJ Transactions on Sensors and Micromachines, 140(6) 119-124, Jun 1, 2020 Peer-reviewedInvitedLead author
-
電子情報通信学会技術研究報告, 114(48(SANE2014 10-20)), 2014
-
Technical report of IEICE. SANE, 113(16) 35-39, Apr 25, 2013 Peer-reviewedJapan has decided to launch the second sample return mission "Hayabusa-2" to the Near Earth asteroid 1999JU3 in 2014. The predecessor spacecraft "Hayabusa" made a great success when it returned to the Earth in June 2010 with a capsule containing some particles obtained around the S-type asteroid "Itokawa." The authors installed a tiny hopping rover called "MINERVA" into Hayabusa spacecraft. The rover was deployed at the vicinity of the asteroid in 2005, but failed to make a surface exploration since the human operator on the ground made a critical failure in deploying the rover. The second spacecraft also involves a plan to have a tiny rover system which will make a surface exploration over the 1km-sized asteroid. With the past experience in developing a rover, the authors are again working to install some rover packages to Hayabusa-2. The total concept is the same but this time multiple rovers are considered. Many of the aspects of the mother spacecraft come from the heritage of the previous explorer which was build using the technologies more than ten years ago. But the rover system is a completely brand-new one, based on the lessons learned from the previous rover system. Since the target asteroid parameters are different from the previous target, the rover design has to be made from the beginning. We also face to the another technically challenging matters arisen from the point of the distance from the Sun as well as the surface cruel temperature of low-albedo body. This paper describes the system configuration of the rover system currently designed and developed for the launch in 2014.
-
IEEE/ASME Transactions on Mechatronics, 18(4) 1233-1236, 2013 Peer-reviewed
-
PALEONTOLOGICAL JOURNAL, 46(9) 1087-1088, Dec, 2012
-
Journal of the Japan Society for Simulation Technology, 31(2) 91-96, Jun 15, 2012
-
Journal of Japanese Society for Artificial Intelligence, 26(2) 156-163, Mar 1, 2011
-
Journal of the Japan Society of Mechanical Engineers, 114(1107) 98-100, Feb 5, 2011
-
Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets, 347-557, Aug 31, 2009 Peer-reviewed
-
Planetary People, 18(2) 66-68, Jun 25, 2009
-
Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist Conference, 2006, 2 1403-1414, Dec 1, 2006
-
Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist Conference, 2006, 3 1553-1574, Dec 1, 2006
-
Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist Conference, 2006, 3 1541-1552, Dec 1, 2006
-
Aeronautical and space sciences Japan, 53(620) 276-281, Sep 5, 2005
-
Aeronautical and space sciences Japan, 53(619) 237-241, Aug 5, 2005
-
Journal of Japan Society for Design Engineering, 38(6) 265-270, Jun 5, 2003
-
宇宙科学研究所報告. 特集, 47 155-210, Mar, 2003M-V型ロケットには,慣性航法誘導装置(ING: Inertial Navigation Guidance)を第3段計器部に搭載し、第1段から第3段までの3軸姿勢制御を行う.M-3SII型ロケットまでの姿勢基準装置は,レートジャイロ(FRIG: Floated Rate Integration Gyro)という機械式ジャイロを1軸のスピンフリーテーブル(SFAP)上に配置していたが,M-V型ロケットにおいては,ファイバオプティックジャイロ(FOG: Fiber Optic Gyro)を機軸に固定するストラップダウン方式を用いて,計算機(CPU)内部で座標変換を行う方式へと大幅に変更をしている.この新しい姿勢基準装置(IMU: Inertial Measurement Unit)は,搭載加速度を用いて,機上で航法誘導演算を行う慣性航法誘導装置INGを構成しているのも,M-V型機の特徴である.FOGは,機械的な可動部分を全くもたないため,信頼性が高く,次世代のジャイロとして諸外国が開発にしのぎを削っているものである.しかしながらその反面,その実用化,特に慣性航法誘導装置に採用されるレベルのドリフト変動を実現するのは非常に困難である.M-V型ロケットで採用しているFOGは,さまざまな課題を克服して完成したものであり,画期的な装置となっている.IMU及びCPUは,第3段の計器部に配置され,この部位での角速度情報は,姿勢変動分のインクリメントとして計測される.一方,第1段の姿勢制御においては,第1段の可動ノズルの応答を加味すると,第3段位置での角速度情報を用いるよりも,第1段後部筒部位での角速度情報を用いた方が、制御系の安定余裕を確保しやすい.そのため,第1後部筒部位には,レートジャイロが搭載されている.第2段ノズル部には,第1段飛翔中の横加速度を測定し,荷重を軽減する論理を可能とすべく,計測用として加速度計が搭載されている.また,各段には通信制御部(I/O)が搭載され,各段間のデータのやりとりを行う.
-
IPSJ SIG Notes. CVIM, 2003(2) 23-30, Jan 16, 2003In recent years, deep space exploration has a lot of attention in the world. Planetary exploration missions have been earnestly studied in Japan as well as US and Europe. As mission requirements are high-level, such advanced technology as landing or rover exploration is required. Because direct surface exploration could throw the light upon the origin and evolution of the earth-type planets. Image processing is expected to play a very important role in deep space exploration. This paper describes image processing technology in space. This paper also presents image based schemes for global mapping, autonomous landing system, and rover navigation.
-
JSME international journal. Series A, Solid mechanics and material engineering, 46(1) A4-A6, Jan 15, 2003
-
Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 57(10) 1230-1234, 2003
-
IEEJ Transactions on Sensors and Micromachines, 120(12) 746-749, 2001
-
NEC Research & Development,, 42(2) 188-192, 2001
-
Journal of Machine Intelligence and Robotics Control (MIROC),, 3(3) 113-119, 2001
-
Journal of the Institute of Electrical Engineers of Japan, 120(12) 746-749, 2001
-
計測と制御 = Journal of the Society of Instrument and Control Engineers, 39(9) 570-575, Sep 10, 2000
-
ESA SP (European Space Agency), (SP-425), 2000
-
Journal of Japan Society of Mechanical Engineers, 104(987) 71-74, 2000
-
Journal of the Society of Instrument and Control Engineers, 39(9) 570-575, 2000
Books and Other Publications
9-
Wiley-VCH, Sep, 2009 (ISBN: 9783527408528)
Presentations
162Teaching Experience
3-
制御システム理論 (東京大学大学院)
-
宇宙電気電子工学 (東京大学大学院)
-
宇宙探査ロボティクス (東京大学大学院)
Professional Memberships
4Works
1Research Projects
10-
科学研究費助成事業, 日本学術振興会, Apr, 2023 - Mar, 2026
-
科学研究費補助金(基盤研究B), Apr, 2012 - Mar, 2015
-
科学研究費補助金(基盤研究C), Apr, 2003 - Mar, 2006
-
宇宙環境利用に関する地上公募研究(萌芽研究), Apr, 2002 - Mar, 2003
-
科学研究費補助金(基盤研究A), Apr, 1998 - Mar, 2001