研究者業績
基本情報
- 所属
- 明治大学 理工学部 特任教授国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 名誉教授
- J-GLOBAL ID
- 200901071014528345
- researchmap会員ID
- 1000174751
- 外部リンク
2014年4月1日〜2017年9月30日
・JAXA宇宙科学研究所 プログラムディレクタ
2018年4月1日〜2020年3月31日
・JAXA宇宙科学研究所 研究総主幹
・JAXA宇宙探査イノベーションハブ ハブ長
・はやぶさ2プロジェクト スポークスパーソン
2020年4月1日〜2023年5月31日
・JAXA統括チーフエンジニア
2024年4月より,明治大学理工学部特任教授
宇宙航空研究開発機構名誉教授(2025年4月1日)
日本ロボット学会フェロー(2022年9月7日)
宇宙探査ロボットの研究開発と実用化への取り組みならびに学会運営への貢献
研究キーワード
9研究分野
5経歴
4-
2024年4月 - 現在
-
2003年10月 - 2024年3月
-
1993年4月 - 2003年9月
-
1991年4月 - 1993年3月
委員歴
6-
2022年10月 - 現在
-
2021年9月 - 現在
-
2003年4月 - 2025年3月
-
2020年4月 - 2022年9月
-
2017年4月 - 2019年3月
受賞
12論文
133-
Journal of Evolving Space Activities Vol.1(Article ID:6) 2023年1月 査読有り最終著者
-
ROBOMECH Journal 9(1) 2022年1月 査読有り最終著者責任著者<title>Abstract</title>In this paper, a novel terrain traversability prediction method is proposed for new operation environments. When an off-road vehicle is operated on rough terrains or slopes made up of unconsolidated materials, it is crucial to accurately predict terrain traversability to ensure efficient operations and avoid critical mobility risks. However, the prediction of traversability in new environments is challenging, especially for possibly risky terrains, because the traverse data available for such terrains is either limited or non-existent. To address this limitation, this study proposes an adaptive terrain traversability prediction method based on multi-source transfer Gaussian process regression. The proposed method utilizes the limited data available on low-risk terrains of the target environment to enhance the prediction accuracy on untraversed, possibly higher-risk terrains by leveraging past traverse experiences on multiple types of terrain surface. The effectiveness of the proposed method is demonstrated in scenarios where vehicle slippage and power consumption are predicted using a dataset of various terrain surfaces and geometries. In addition to predicting terrain traversability as continuous values, the utility of the proposed method is demonstrated in binary risk level classification of yet to be traversed steep terrains from limited data on safer terrains.
-
ROBOMECH Journal 9(1) 2022年1月 査読有り最終著者責任著者<title>Abstract</title>Hopping robots, called hoppers, are expected to move on rough terrains, such as disaster areas or planetary environments. The uncertainties of the hopping locomotion in such environments are high, making path planning algorithms essential to traverse these uncertain environments. Planetary surface exploration requires to generate a path which minimises the risk of failure and maximises the information around the hopper. This paper newly proposes a hopping path planning algorithm for rough terrains locomotion. The proposed algorithm takes into account the motion uncertainties using Markov decision processes (MDPs), and generates paths corresponding to the terrain conditions, or the mission requirements, or both. The simulation results show the effectiveness of the proposed route planning scheme in three cases as the rough terrain, sandy and hard ground environment, and non-smooth borders.
MISC
65書籍等出版物
9-
Wiley-VCH 2009年9月 (ISBN: 9783527408528)
講演・口頭発表等
162担当経験のある科目(授業)
3-
制御システム理論 (東京大学大学院)
-
宇宙電気電子工学 (東京大学大学院)
-
宇宙探査ロボティクス (東京大学大学院)
所属学協会
4Works(作品等)
1共同研究・競争的資金等の研究課題
10-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
科学研究費補助金(基盤研究B) 2012年4月 - 2015年3月
-
科学研究費補助金(基盤研究C) 2003年4月 - 2006年3月
-
宇宙環境利用に関する地上公募研究(萌芽研究) 2002年4月 - 2003年3月
-
科学研究費補助金(基盤研究A) 1998年4月 - 2001年3月
-
科学研究費補助金(基盤研究C) 1999年4月 - 2000年3月