Curriculum Vitaes

Takashi Kubota

  (久保田 孝)

Profile Information

Affiliation
Professor, School of Science and Technology, Meiji University
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

J-GLOBAL ID
200901071014528345
researchmap Member ID
1000174751

External link

 

2014年4月1日〜2017年9月30日
・JAXA宇宙科学研究所 プログラムディレクタ

2018年4月1日〜2020年3月31日
・JAXA宇宙科学研究所 研究総主幹
・JAXA宇宙探査イノベーションハブ ハブ長
・はやぶさ2プロジェクト スポークスパーソン

2020年4月1日〜2023年5月31日
・JAXA統括チーフエンジニア

2024年4月より,明治大学理工学部特任教授

宇宙航空研究開発機構名誉教授(2025年4月1日)

日本ロボット学会フェロー(2022年9月7日)
宇宙探査ロボットの研究開発と実用化への取り組みならびに学会運営への貢献


Research History

 4

Papers

 133
  • Masatoshi Motohashi, Takashi Kubota
    Journal of the Robotics Society of Japan, 42(9) 908-911, Nov, 2024  Peer-reviewedCorresponding author
  • Stephane BONARDI, Lucas FROISSART, Toshihisa NIKAIDO, Francois LONGCHAMP, Auke IJSPEERT, Takashi KUBOTA
    Journal of Evolving Space Activities, Vol.1(Article ID:6), Jan, 2023  Peer-reviewedLast author
  • Masatoshi Motohashi, Takashi Kubota
    Journal of the Robotics Society of Japan, 40(5) 441-444, May, 2022  Peer-reviewedLast author
  • Hiroaki Inotsume, Takashi Kubota
    ROBOMECH Journal, 9(1), Jan, 2022  Peer-reviewedLast authorCorresponding author
    <title>Abstract</title>In this paper, a novel terrain traversability prediction method is proposed for new operation environments. When an off-road vehicle is operated on rough terrains or slopes made up of unconsolidated materials, it is crucial to accurately predict terrain traversability to ensure efficient operations and avoid critical mobility risks. However, the prediction of traversability in new environments is challenging, especially for possibly risky terrains, because the traverse data available for such terrains is either limited or non-existent. To address this limitation, this study proposes an adaptive terrain traversability prediction method based on multi-source transfer Gaussian process regression. The proposed method utilizes the limited data available on low-risk terrains of the target environment to enhance the prediction accuracy on untraversed, possibly higher-risk terrains by leveraging past traverse experiences on multiple types of terrain surface. The effectiveness of the proposed method is demonstrated in scenarios where vehicle slippage and power consumption are predicted using a dataset of various terrain surfaces and geometries. In addition to predicting terrain traversability as continuous values, the utility of the proposed method is demonstrated in binary risk level classification of yet to be traversed steep terrains from limited data on safer terrains.
  • Kosuke Sakamoto, Takashi Kubota
    ROBOMECH Journal, 9(1), Jan, 2022  Peer-reviewedLast authorCorresponding author
    <title>Abstract</title>Hopping robots, called hoppers, are expected to move on rough terrains, such as disaster areas or planetary environments. The uncertainties of the hopping locomotion in such environments are high, making path planning algorithms essential to traverse these uncertain environments. Planetary surface exploration requires to generate a path which minimises the risk of failure and maximises the information around the hopper. This paper newly proposes a hopping path planning algorithm for rough terrains locomotion. The proposed algorithm takes into account the motion uncertainties using Markov decision processes (MDPs), and generates paths corresponding to the terrain conditions, or the mission requirements, or both. The simulation results show the effectiveness of the proposed route planning scheme in three cases as the rough terrain, sandy and hard ground environment, and non-smooth borders.

Misc.

 65
  • KUBOTA Takashi
    JRSJ, 17(5) 609-614, Jul 15, 1999  
  • KUBOTA T, SAWAI S, MISU T, HASHIMOTO T, KAWAGUCHI J, FUJIWARA A
    ESA SP (European Space Agency), (SP-440), 1999  
  • 16(8) 1058-1058, Nov 15, 1998  
  • Saitoh Hirofumi, Hashimoto Tatsuaki, Mizuno Takahide, Kubota Takashi, Hirokawa Eiji, Okumura Eisuke, Shoda Kojiro, Tsuno Katsuhiko
    Technical report of IEICE. SANE, 98(215) 59-66, Jul 24, 1998  
    MUSES-C is a sample return mission program of ISAS toward the asteroid NEREUS. The mission requires innovative guidance and navigation control technology such as interplanetary cruise, approach toward the asteroid, touch-down, and take-off.This paper reports the development of four sensors, star tracker, lidar, laser range finder, fan beam sensor, for guidance and navigation control system of MUSES-C.
  • 日本設計工学会誌, 33(12) 438-442, 1998  
  • 日本設計工学会誌, 33(12) 431-437, 1998  
  • Journal of Space Technology and Science, 12(1) 1-8, 1998  
  • Journal of Japan Society for Design Engineering, 33(12) 438-442, 1998  
  • Journal of Japan Society for Design Engineering, 33(12) 431-437, 1998  
  • NAKATANI Ichiro, KAWAGUCHI Junichiro, KUBOTA Takashi, TADA Hirohiko, HIRANO Takafumi, HAYASHI Fusao, NASU Jouji, KUROKAWA Akihiro, ABE Masaru, HASEGAWA Ritsuo
    1997(15) 19-24, May 30, 1997  
  • 久保田孝
    日本ロボット学会誌, 15(7) 986-992, 1997  
  • 中谷一郎
    日本ロボット学会誌, 14(7) 940-943, 1996  
  • Journal of the Robotics Society of Japan, 14(7) 940-943, 1996  
  • KUBOTA Takashi, KATOH Hiroshi, NAKATANl Ichiro, ADACHI Tadashi, TAKANO Tsutomu
    The Journal of Space Technology and Science, 12(1) 1_1-1_8, 1996  
    Recently there have been a lot of attention to developing planetary rovers for Lunar or Mars Exploration. In 1997, Mars Pathfinder succeeded in landing Martian surface and the micro-rover &amp;ldquo;sojourner&amp;rdquo; could travel on Mars. Toward the turn of the century, several schemes sending an unmanned mobile explorer to the moon or Mars are being planned for scientific exploration. Planetary rovers are required to travel safely over a long distance for many days in unknown terrain and are also required to explore rough and steep areas such as craters, cliffs, etc. to achieve scientific goals. Most of the proposed rovers have some wheels to move on a planetary surface. However, a legged rover can provide higher capability of moving in such a rough terrain than wheeled robots. Therefore the authors have studied a small and light-weight rover which can move across a rough terrain such as a steep slope inside craters. A prototype of the robot with six legs has been developed. This paper presents the system concept, architecture, and configuration of the developed walking rover for planetary exploration. This paper also discusses a stability criterion and a walking algorithm for static walking in a rough terrain.
  • 機械の研究, 43(1) 151-157, 1991  

Books and Other Publications

 9

Presentations

 162

Teaching Experience

 3

Research Projects

 10

Industrial Property Rights

 2