研究者業績

浅見 敏彦

アサミ トシヒコ  (Toshihiko Asami)

基本情報

所属
兵庫県立大学 特任教授
学位
工学博士(姫路工業大学)

J-GLOBAL ID
201801002563516640
researchmap会員ID
B000323733

1954年3月に兵庫県姫路市に生まれる。高等学校卒業までは姫路で過ごし,大学は新潟大学工学部精密工学科に進学する。大学卒業後は同大学の大学院修士課程に進学し,修了後しばらくの間,同大学の研究生を続ける。1978年11月に姫路工業大学の工学部機械工学科の助手として着任する。この姫路工業大学は,大学統合により2004年4月に兵庫県立大学に名称変更される。2019年3月に同大学を定年退職し,2022年3月までは同大学の特任教授を務めていた。現在は同大学の名誉教授として研究生活を続けている。


学歴

 2

論文

 107

MISC

 93
  • 川口 夏樹, 荒木 望, 佐藤 孝雄, 黒田 雅治, 浅見 敏彦
    電気学会研究会資料. CT 2019(85) 25-29 2019年6月22日  
  • 岡川 佳記, 川口 夏樹, 荒木 望, 佐藤 孝雄, 黒田 雅治, 浅見 敏彦
    電気学会研究会資料. CT 2019(46) 61-64 2019年3月2日  
  • 馬場 雄一, 浅見 敏彦, 伊勢 智彦, 本田 逸郎
    Dynamics & Design Conference 2017 2017年  
    Desktop vibration isolators are often used as a platform for precision measuring instruments. This article discusses the accuracy of performance prediction methods for vibration isolators elastically supported by four air springs. Each air spring possesses a reservoir tank to ensure the natural frequency of the support system remains low and to provide adequate damping force. For practical use, air springs and reservoir tanks should be installed in separate locations and connected by a small-diameter pipe because desktop isolators must be thin. Our previous studies have shown that there is a secondary resonance point in systems supported by air springs with long pipes and reservoir tanks and that it is not simple to theoretically calculate the amplitude and frequency at this point because this type of air spring support system has nonlinear characteristics. In this study, the change in the vibration isolation performance of a desktop vibration isolator with the length of the pipe connecting the main air tank and the reservoir tank of an air spring-supported system was examined experimentally and approximated using theoretical calculations.
  • 朝野 毅士, 仲村 鴻輝, 浅見 敏彦, 伊勢 智彦, 本田 逸郎
    Dynamics & Design Conference 2017 2017年  
    The purpose of the present study is to clarify the fluid flow of an oil damper through numerical analysis in order to estimate the exact damping coefficient of an oil damper. The finite difference method was used to solve the governing equation of the fluid flow generated by a moving piston. Time steps based on the fractional step method and the arbitrary Lagrangian-Eulerian (ALE) method were adopted for the moving boundary. In the moving boundary problem, a masking method with a single block grid system was used to stabilize the computation . In other words, algebraic grid generation using a stretching function was used for the moving piston in the cylinder of the oil damper. The time-dependent coordinate system in the physical domain, which coincides with the contour of the moving boundary, is transformed into a stationary rectangular coordinate system in the computational domain. In order to valiade the caluculated results, they were compared with experimental results and the approximate algebraic solution. As a result, it became possible to estimate exactly the degree of contribution of the conversation term the Navier-Stokes equation on the damping coeffcient of the oil damper.
  • 寺前 佳祐, 伊勢 智彦, 浅見 敏彦, 本田 逸郎
    関西支部講演会講演論文集 2017 2017年  

書籍等出版物

 8

担当経験のある科目(授業)

 13

共同研究・競争的資金等の研究課題

 4