Curriculum Vitaes

Shin-ichi Honda

  (本多 信一)

Profile Information

Affiliation
Professor, Graduate School of Engineering, University of Hyogo
Degree
Engineering(Osaka University)

J-GLOBAL ID
201801013684947136
researchmap Member ID
B000347979

External link

Papers

 121
  • Yuta Ohsawa, Yohei K. Sato, Tomoya Saito, Masami Terauchi, Takashi Kitazume, Takumi Tokunaga, Yuji Higo, Keisuke Niwase, Masahito Niibe, Shin-ichi Honda
    Carbon Trends, 19 100487-100487, Apr, 2025  Peer-reviewed
  • Shunjiro Fujii, Shin-ichi Honda, Yoshihiro Oka, Yuki Kuwahara, Takeshi Saito
    Materials, 16(2), Jan, 2023  Peer-reviewed
  • MORISHITA Hiroki, FUJII Shunjiro, HONDA Shin-ichi, KUBO Toshitaka, SHIMIZU Tetsuo
    Vacuum and Surface Science, 65(9) 388-393, Sep 10, 2022  Peer-reviewed
    Copper oxide nanowires with good crystallinity and high aspect ratio have been attractive for use in high-performance optical and electronic devices. In this work, we fabricated copper oxide nanowires by thermal oxidation method. Copper oxide nanowires were fabricated at various heating times, keeping at a heating temperature of 500℃. When the heating time was over 30 minutes, the average width of the nanowires reached about 100 nm. It was observed that the bottom part of the nanowire was thick compared to the top part. We investigated the detailed structure by using micro-raman spectroscopy and electron backscatter diffraction (EBSD). From the results of raman spectra and EBSD crystal orientation mappings, it was found that Cu2O/CuO heterostructure is formed at the thick region of the nanowire. Two type of heterostructures were confirmed, namely Cu2O(110)/CuO(001) and Cu2O(110)/CuO(110).
  • Wei Li, Jeng-Yu Ke, Yun-Xuan Ou-Yang, Ying-Xuan Lin, Ching-Hwa Ho, Kuei-Yi Lee, Shunjiro Fujii, Shin-ichi Honda, Hideaki Okado, Masamichi Naitoh
    Japanese Journal of Applied Physics, 61(8) 086504-086504, Jul 27, 2022  Peer-reviewed
    Abstract The chemical vapor transport method was used in this research to synthesize MoS2 bulk. Through mechanical exfoliation, we limited the thickness of MoS2 flakes from 1 to 3 μm. In order to fabricate a p–n homogeneous junction, we used oxygen plasma treatment to transform the MoS2 characteristics from n-type to p-type to fabricate a p–n homogenous junction and demonstrate the charge neutrality point shift from −80 to +102 V successfully using FET measurement. The MoS2 p–n homogeneous junction diode showed an excellent p-n characteristic curve during the measurements and performed great rectifying behavior with 1–10 Vpp in the half-wave rectification experiment. This work demonstrated that MoS2 flake had great potential for p-n diodes that feature significant p–n characteristics and rectifying behavior.
  • Syusaku Nakamura, Wataru Nakamura, Shunjiro Fujii, Shin-ichi Honda, Masahito Niibe, Mititaka Terasawa, Yuji Higo, Keisuke Niwase
    Diamond and Related Materials, 123 108828, Mar, 2022  Peer-reviewed

Misc.

 32

Books and Other Publications

 4

Presentations

 15

Research Projects

 13

Industrial Property Rights

 17