名誉教授

Takashi Kubota

  (久保田 孝)

Profile Information

Affiliation
Professor, School of Science and Technology, Meiji University
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency

J-GLOBAL ID
200901071014528345
researchmap Member ID
1000174751

External link

 

2014年4月1日〜2017年9月30日
・JAXA宇宙科学研究所 プログラムディレクタ

2018年4月1日〜2020年3月31日
・JAXA宇宙科学研究所 研究総主幹
・JAXA宇宙探査イノベーションハブ ハブ長
・はやぶさ2プロジェクト スポークスパーソン

2020年4月1日〜2023年5月31日
・JAXA統括チーフエンジニア

2024年4月より,明治大学理工学部特任教授

宇宙航空研究開発機構名誉教授(2025年4月1日)

日本ロボット学会フェロー(2022年9月7日)
宇宙探査ロボットの研究開発と実用化への取り組みならびに学会運営への貢献


Research History

 4

Papers

 133
  • Masatoshi Motohashi, Takashi Kubota
    Journal of the Robotics Society of Japan, 42(9) 908-911, Nov, 2024  Peer-reviewedCorresponding author
  • Stephane BONARDI, Lucas FROISSART, Toshihisa NIKAIDO, Francois LONGCHAMP, Auke IJSPEERT, Takashi KUBOTA
    Journal of Evolving Space Activities, Vol.1(Article ID:6), Jan, 2023  Peer-reviewedLast author
  • Masatoshi Motohashi, Takashi Kubota
    Journal of the Robotics Society of Japan, 40(5) 441-444, May, 2022  Peer-reviewedLast author
  • Hiroaki Inotsume, Takashi Kubota
    ROBOMECH Journal, 9(1), Jan, 2022  Peer-reviewedLast authorCorresponding author
    <title>Abstract</title>In this paper, a novel terrain traversability prediction method is proposed for new operation environments. When an off-road vehicle is operated on rough terrains or slopes made up of unconsolidated materials, it is crucial to accurately predict terrain traversability to ensure efficient operations and avoid critical mobility risks. However, the prediction of traversability in new environments is challenging, especially for possibly risky terrains, because the traverse data available for such terrains is either limited or non-existent. To address this limitation, this study proposes an adaptive terrain traversability prediction method based on multi-source transfer Gaussian process regression. The proposed method utilizes the limited data available on low-risk terrains of the target environment to enhance the prediction accuracy on untraversed, possibly higher-risk terrains by leveraging past traverse experiences on multiple types of terrain surface. The effectiveness of the proposed method is demonstrated in scenarios where vehicle slippage and power consumption are predicted using a dataset of various terrain surfaces and geometries. In addition to predicting terrain traversability as continuous values, the utility of the proposed method is demonstrated in binary risk level classification of yet to be traversed steep terrains from limited data on safer terrains.
  • Kosuke Sakamoto, Takashi Kubota
    ROBOMECH Journal, 9(1), Jan, 2022  Peer-reviewedLast authorCorresponding author
    <title>Abstract</title>Hopping robots, called hoppers, are expected to move on rough terrains, such as disaster areas or planetary environments. The uncertainties of the hopping locomotion in such environments are high, making path planning algorithms essential to traverse these uncertain environments. Planetary surface exploration requires to generate a path which minimises the risk of failure and maximises the information around the hopper. This paper newly proposes a hopping path planning algorithm for rough terrains locomotion. The proposed algorithm takes into account the motion uncertainties using Markov decision processes (MDPs), and generates paths corresponding to the terrain conditions, or the mission requirements, or both. The simulation results show the effectiveness of the proposed route planning scheme in three cases as the rough terrain, sandy and hard ground environment, and non-smooth borders.

Misc.

 65

Books and Other Publications

 9

Presentations

 162

Teaching Experience

 3

Research Projects

 10

Industrial Property Rights

 2